
This document is an abridged version of the Macros sections from the Technical Reference. In
your Word for Windows package, you will find a form to fill out and mail in to purchase the
Technical Reference.

Macros: Introduction

A macro is a set of instructions that you can create for Microsoft Word to follow. You can
use a macro to combine a series of actions into one step. Whenever you frequently repeat the
same steps in Word, it's likely that creating a macro to perform the task can save you some time
and effort.

You can use macros to configure and customize Word for many situations. You can add and
delete menu items, move them around, and assign commands to key combinations. In some cases
you may want to write special applications with Word. Using fields, macros, and templates you
can create a document processing system that meets your specific needs.

The examples in this chapter highlight the programming possibilities available with Word.
Although these examples are simple, they show some of the basics with which you can create
your own programs with Word.

Writing a Macro
There are two ways to write a macro. You can create a macro by "recording" keystrokes you

make. You can also write your macro by using the statements and functions of WordBASIC, the
Word macro language. For more information on specific statements and functions, see Macros:
Reference.

Using Macro Record to Write a Macro
When you record a macro, you turn on the recorder and Word records all the actions you take

until you turn off the recorder.

To record a macro:

1 Choose Macro Record (Alt,M,C).
The Macro Record dialog box appears on the screen.

2 Type the name you want to give the macro, or accept the proposed name.
3 If you want, type a description of the macro in the Description box.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

4 When you're ready to begin recording, choose OK.
Word records any subsequent steps you perform. Once you start recording a macro, any
keyboard or menu commands you choose are automatically recorded. The only mouse
actions recorded are those that actually choose a menu command or dialog box item. For
example, if you select text with the mouse, Word does not record that action.

5 To stop the macro recorder, choose Macro Stop Recorder (Alt,M,C).

The macro recorder is useful even if you don't want to record an entire macro. Recording all
or part of a macro and then editing it is often faster than typing it from scratch, and you don't
have to look up the syntax for every function and statement you want to use. You can also use
the PauseRecorder and RecordNextCommand commands to help construct a macro. For more
information on these statements, see Macros: Reference.

Using Macro Edit to Write a Macro
You can use the Macro Edit command to write your macro directly and then save it.

To write a macro directly:
1 Choose Macro Edit (Alt,M,E), type a name for the macro, and choose OK. The macro

editing icon bar appears below the menu bar (see below).
2 Type the desired macro programming statements and functions.
3 Close the macro editing window (Alt,F,C).

Macro Editing Icon Bar
The macro editing icon bar includes a number of functions that can help you debug your

macro programs. Press Alt+Shift+the underlined letter to choose an icon. The icons are described
as follows:

Start/Continue:
Runs the active macro; changes from Start to Continue after a stop (such as after a Step).

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Step:
Runs a single macro instruction and then stops. If the instruction is a subroutine, Word runs

each instruction in that subroutine as a single step.

Step SUBs:
Runs a single macro instruction and then stops. If the instruction is a subroutine, Word runs

that subroutine in its entirety as a single step.

Trace:
Runs the active macro, highlighting each instruction as it is carried out.

Vars:
Displays the variables the macro uses.

Global/Template (name):
This text shows you the context (global or template) of the active macro. If the context is

template, the template name is displayed.

(Name):
Displays the name of the active macro

Running a Macro
Note: Because an untested macro can create errors or alter your file, always make backup

copies of your files before you test a new macro.

Once your macro has been written, you can run it by doing the following:
1 Choose Macro Run (Alt,M,R).
2 Type the name of the macro you want to run, or select a name from the list in the Run

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Macro Name box.
3 Choose OK.

A Sample Macro
The following procedures create a macro that automatically sets formatting properties for a

document:

1 If you are in page view, switch to draft view or normal editing view.
2 If the status bar is not displayed, choose View Status Bar (Alt,V,S).
3 Choose Macro Record (Alt,M,C).
4 In the Record Macro Name box, type PageSetup to name the macro.

Note that the Global Context option is selected. This means the macro can be used in any
document you open.

5 Choose OK. "REC" appears on the right side of the status bar, indicating that Word is
now recording the keystrokes you make.

Now, choose the commands and options as you want them recorded:
1 Choose Format Document (Alt,T,D).
2 Change the default tab stops to 0.25".
3 Change the left margin to 1".
4 Change the right margin to 0.5".
5 Choose OK to accept these changes.
6 Choose Format Character (Alt,T,C).
7 Change the font to Tms Rmn.
8 Change the point size to 12.
9 Choose OK to accept these changes.
10 Choose Edit Header/Footer (Alt,E,H).
11 Select Footer and choose OK to open the header/footer pane.
12 Click the page icon to put the page number on the left side of the footer.
13 Press Tab twice, then click the date icon to put the date on the right side of the footer.
14 Choose Close.

To stop recording actions, choose Macro Stop Recorder (Alt,M,C). "REC" disappears from
the status bar.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

To test the new macro you have recorded:
1 Select a document.
2 Choose Macro Run (Alt,M,R).
3 Scroll through the list of macros and double-click PageSetup to start running the macro.

If you made any mistakes when recording the macro, messages will appear on the screen.

You can add the macro to the Macro menu for easier access. To add the PageSetup macro to
the Macro menu:

1
2
3
4
The PageSetup macro now appears on the Macro menu. To run this macro, press Alt,M,P. If
you want to remove the macro from the Macro menu, choose Macro Assign To Menu, select
PageSetup, and choose Unassign.

You can use the Macro Edit command to look at the command list created when you record a
macro. To look at the PageSetup macro:

1
2
The PageSetup macro appears in the macro editing window. These are the statements and
functions that comprise the PageSetup macro. They correspond to the actions you recorded.

Other example macros are available in your EXAMPLES.DOT file.

Macro Programming Concepts
This section describes in more detail some of the features of WordBASIC, Word's macro

language.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

The WordBASIC Language
WordBASIC macros exist on three "layers," much like the three file levels DOS uses. If you

are an experienced DOS user, you know that DOS executes files in this order: filename.exe,
filename.com, and filename.bat. You can therefore have three files with the same file name-but
with different extensions-and DOS runs them according to this convention.

WordBASIC's three layers are the template layer, the global layer, and the command menu
layer. These layers are described in the following table:

Layer Description
Template Includes only those macros based on the specified template
Global Includes macros you create that are available to all

documents
Built-in command Includes the commands on all the default Word menus and

assigned to default key combinations

When you run a macro, Word searches for it in the following order: template layer, then
global layer, then the built-in command layer. So, if you create a macro with the same name as a
built-in macro, your version will be executed instead of the original version. If Word cannot find
a macro, a message to that effect is displayed.

Remember the order of macro execution when naming macros. If you have a macro at the
template layer and a macro at the global layer with the same name and you want the global
macro executed, you must either rename one of the macros or precede the macro with the Super
prefix statement. The Super prefix forces Word to ignore the current layer and start searching the
next layer. For example, the following macro, called FormatDocument, disables mirror margins
when the Format Document command is chosen:

Sub MAIN
Dim dlgrec As FormatDocument
GetCurValues dlgrec
Again:
Dialog dlgrec
If dlgrec.MirrorMargins = 1 Then

Beep

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

MsgBox "Mirror Margins have been disabled by this macro"
dlgrec.MirrorMargins = 0
Goto Again

End If
Super FormatDocument dlgrec
End Sub

Auto Macros
Word reserves special names for macros you can create to alter aspects of Word's behavior.

These are called "auto macros." Word recognizes a macro whose name begins with "Auto" as a
macro that runs automatically when the situation it applies to arises. You supply the actual steps
for the auto macro.

You can prevent an auto macro from running by holding down the Shift key when you
perform the action that triggers the macro.

AutoNew:
The AutoNew macro runs after you create a new document based on the current template.

AutoOpen:
The AutoOpen macro runs after you open a file with File Open, File Find, or the list of

documents at the bottom of the File menu.

AutoExec:
The AutoExec macro runs when you start Word. This macro makes it easy to instruct Word

to automatically make adjustments when you start it. You can prevent AutoExec from running by
typing the /m switch when you start Word (winword /m).

AutoClose:
The AutoClose macro runs when you close a document (File Close, Document Control Close,

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

File Exit, or closing Windows).

AutoExit:
The AutoExit macro runs when you quit Word.

WordBASIC Statements and Functions
WordBASIC includes both statements and functions. A statement performs an action, such as

italicizing text. A function produces, or "returns," a number or a set of characters that represent
information. Functions appear in the text with parentheses () following them.

WordBASIC includes three types of statements and functions: utility statements and
functions, BASIC statements and functions, and dialog control definition statements. These
statements and functions are described in more detail in Macros: Reference. The following table
briefly describes each type:

Utility statements and functions
Miscellaneous statements and functions that allow you to get information needed by a macro.

Includes dialog box equivalents, which are equivalent to Word commands that produce a dialog
box. For example, the WordBASIC statement UtilRenumber is equivalent to choosing the
Utilities Renumber command and displaying the resulting dialog box.

BASIC statements and functions
Statements and functions taken directly from the Microsoft QuickBASIC language.

Dialog control definition statements
Statements that create customized dialog boxes. For example, the GroupBox statement

creates a box with a title grouping several options together in a dialog box.

WordBASIC is a subset of the BASIC programming language, similar to Microsoft
QuickBASIC. One difference between WordBASIC and prior forms of BASIC is that the main

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

program must be located inside a subroutine called MAIN. Sub MAIN is always the first line of a
WordBASIC macro; End Sub is always the last line (see "Subs," later in this chapter). Nothing is
allowed outside this subroutine except global variable declarations, such as Dim and Declare, and
the other Sub and Function definitions. The following example shows a small program in both
BASIC and WordBASIC:

BASIC WordBASIC
Print "Hello!" Sub MAIN
End Print "Hello!"

End Sub

The result of the first program in BASIC displays "Hello!" on the screen. In WordBASIC,
"Hello!" appears in the status bar at the bottom of the screen.

In WordBASIC you can use a colon (:) to separate two statements or functions on the same
line. You can use a backslash (\) at the end of a line of code to indicate that the code continues
on the next line.

Data Types
WordBASIC supports two basic data types: strings and numbers. Word uses double-

precision, floating-point numbers. Strings can contain up to 32,000 characters, depending on the
amount of memory available. The following are examples of these data types.

String Number
Text$ = "this is a string of characters"

Sales = 270
Print Text$ Print Sales

Variables are usually local to the subroutine or function in which they are used. If your macro
consists of several subroutines or functions and you want to make a variable globally available to
subroutines and functions within the macro, declare them with a Dim statement located outside
the Sub MAIN. If you want to permanently store variables, store them in a file or glossary.

String variables must have a trailing dollar sign; for example, Name$. Numeric variable

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

names require no special character. Unlike standard BASIC, WordBASIC does not support
integer variables. Word does support multidimensional arrays of strings or values. Array
variables are declared with the Dim statement and can be redimensioned with the Redim
statement.

The syntax for the Dim statement is as follows:
Syntax: Dim [Shared] Var [(Size)] [, Var [(Size)]...]

The Dim statement declares a variable's type and allocates storage space for the variable. If
Shared is used, then the variable is global; if not, the variable is local to the Sub or Function.
If the variable is global, the Dim statement must be located outside the Sub or Function. If
the variable is local, the Dim statement must be located inside the Sub or Function. Dim can
also be used to declare global scalar (nonarray) variables.

Arrays allow you to assign multiple values to a single variable. The macro can then
determine which value to access, as shown in the following example:

Program listing Effect
Sub MAIN
Dim MonthSales(12) Dimensions a one-dimensional array to hold 12 values
For Month = 1 To 12 Sets up a loop for the macro to cycle through 12 times
Input "Please enter the sales for Ask the user for input; the value input is assigned to the
this month", MonthSales(Month) array element called MonthSales(Month); Month will vary

from 1 to 12 as the loop progresses
Next Month Increments Month by 1; returns to the For statement; when

the value reaches 12, the macro continues to the next line
End Sub

Using the array form shortens the program. Without an array, each month would have to be
entered as an individual variable.

If a macro uses dialog boxes or commands that use dialog boxes, a third data type is
available, the dialog record. A dialog record consists of a list of "fields." Each field in a dialog
record contains the value of an element in the dialog box; the value is a number in some cases
and a string in others. Some dialog record fields can accept either a number or a string; in these
cases, Word converts a string such as "1 in" to the equivalent number of printer's points. This

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

feature is only available for some dialog record fields. These fields are followed by a dollar sign
enclosed in brackets ([$]) in the macro statement syntax in this chapter. This is a convention used
for your information only. Do not include the [$] when you are writing dialog records in macros.
You can set or read a specific field of a dialog record by specifying the field name, preceded by a
period (.).

Dim can be used to dimension dialog records. The syntax follows:
Dim DialogRecord As DialogBox

In the above syntax Dim allocates to DialogRecord the storage space and associated field
types for DialogBox.

To copy the current elements of a dialog box to a dialog record, use the GetCurValues
statement (see Macros: Reference for more information on the GetCurValues statement).

The Dialog statement can be used to display a dialog box with the values taken from the
specified dialog record (see Macros: Reference for more information on the Dialog statement).

Program listing Effect
Sub MAIN
Dim dlg As FormatDocument Creates a dialog record with empty fields
GetCurValues dlg Places the current values of the Format Document

command into the record
If dlg.MirrorMargins = 0 Then Toggles the mirror margins field of the record

dlg.MirrorMargins = 1
Else dlg.MirrorMargins = 0
Dialog dlg Displays the dialog box

FormatDocument dlg Performs the action using the values specified in the dialog
record

End Sub

Expressions
Word can evaluate complex numeric and string expressions. In WordBASIC, all relational

expressions return -1 if True and 0 (zero) if False. If strings are used with relational operators,

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

the strings are first converted to ASCII values, and the resulting values are used in the
comparison. For example, in the expression If "Apple"<"Orange" Then Print "Apple is less than
Orange." Word converts the relational expression into a value that represents True or False. The
If statement accepts the value and then performs the operation accordingly.

Bitwise operators (Not, And, Or) convert numbers to 16-bit integers and then process the
individual bits of the number in binary format.

Hint: Not of -1 is False. Not of any other number, including 0 (zero), is True. Therefore, be
careful when using bitwise operators with non-Boolean functions.

All expressions are evaluated such that multiplication and division are performed before
addition and subtraction. To perform operations in a different order, use parentheses, as shown in
the second example that follows:

Equation Effect
14 * 5 - 6 Multiplies 14 by 5, then subtracts 6 from the result
14 * (5 - 6) Subtracts 6 from 5, then multiplies 14 by the result

Control Structures
The following control structures can be used to program Word macros. Their actions are

similar to those used in Microsoft QuickBASIC.

For...Next
Syntax:

Statement(s)

Next [CounterVariable]

Executes the statements between For and Next as many times as it takes the CounterVariable
to go from the Start value to the End value. The Increment is the value to increment the counter
(usually 1).

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

For names the CounterVariable and specifies the Start and End values in the range of the
CounterVariable. These values can be expressed as constants, as variables derived before the start
of the loop, or as expressions that compute a range of values for the CounterVariable.

The Increment can be a positive or a negative number; positive numbers increase the count,
negative numbers decrease the count. If Increment is omitted, the default is 1. An example
follows:

For Month = 1 To 12

Next Month

Goto
Syntax: Goto Label/LineNumber

Branches unconditionally to an optional label or line number. The syntax for labels and line
numbers follows:

Label: [Statement]
LineNumber Statement

If...ElseIf...Else...End If
Syntax: If Condition Then Statement(s) [Else Statement(s)]
Syntax: If Condition1 Then

Statement(s)
[ElseIf Condition2 Then
Statement(s)]
[Else
Statement(s)]
End If

Performs conditional execution or branching, depending on the expressions. The conditions
in an If...ElseIf...Else...End If block can be any numeric expressions in WordBASIC.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

WordBASIC evaluates the conditions in the order in which they appear and executes the
statements corresponding to the first condition resulting in a True (nonzero) value.

If tests for a specified condition. If the condition exists, the operations following the Then
statement are executed. Else is performed if none of the If or ElseIf conditions evaluate to True.
Else is optional; if it is not included and all previous conditions are False, Word takes no action.

To build conditional expressions, use the relational operators (=, <>, <, >, >=, <=) and the
Boolean operators (And, Or, Not).

An example of the If...Then control structure follows:
If Sales > 300 Then Print "Sales were more than 300"

An example of the If...ElseIf...Else...End If control structure follows:
If Sales > 300 Then

ElseIf Sales > 280 Then

Else

End If

On Error
Syntax: On Error Goto Label
Syntax: On Error Resume Next
Syntax: On Error Goto 0

Normally, when WordBASIC encounters an error in a program, a message explaining the
error is displayed and the program is terminated. The On Error control structure allows the
programmer to "trap" an error so that the program can perform its own error handling. The first
form of the control structure, On Error Goto, causes the program to branch to the specified label
whenever an error occurs. At the end of the error handling, it is necessary to reset the variable
Err to 0 for further errors to be trapped.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

The second form of the control structure, On Error Resume Next, causes all errors to be
ignored.

The third form of the control structure, On Error Goto 0, disables the error trapping. Once an
error has been trapped, the special variable Err contains the code for the error that occurred. For
more information on error codes, see the full Technical Reference.

Be careful when using error trapping. The statement causing the error may have performed
some, but not all, of its action, thereby causing other statements that rely on that action to fail.

Select Case
Syntax: Select Case Expression

Case CaseExpression
Statement(s)
[Case Else
Statement(s)]
End Select

This control structure is similar to a multi-line If statement in that a statement or group of
statements is executed based on the result of some expression. With Select Case, however, only
one expression is evaluated, even though there may be several groups of statements.

The Expression is evaluated and the result is compared with the CaseExpression. A
CaseExpression is preceded by the keyword Case and may be followed by a single value, a list of
values separated by commas, a range of values separated by the keyword To, or a relation started
with the keyword Is, followed by a relational operator (=, <>, <, >, <=, or >=) and an expression.

The Expression is compared with all the values given in each CaseExpression until a match is
found. If a match is found, the Statement(s) following the CaseExpression are executed. If there
is no match and there is a Case Else, those Statement(s) are executed.

An example follows:
Select Case Int(Rnd() * 10) - 5
Case 1,3

Print "one or three"
Case Is > 3

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Print "Greater than three"
Case -5 to 0

Print "Between -5 and 0 (inclusive)"
Case Else

Print "Must be 2"
End Select

Stop
Syntax: Stop

Stops a running macro and displays a message that the macro was interrupted.

While...Wend
Syntax: While Condition

Statement(s)
Wend

Repeats the statements in the block while the Condition is True. If the Condition is initially
False, the loop is never executed.

A While...Wend loop uses a conditional expression to determine the number of times the
Statement(s) are executed. WordBASIC evaluates the Condition each time the Statement(s) are
executed. As long as the Condition evaluates as True, the Statement(s) are executed. When the
Condition evaluates as False, the Statement(s) are no longer executed.

A conditional statement is any numeric expression. To build conditional expressions, use the
relational operators (=, <>, <, >, >=, <=) and the Boolean operators (And, Or, Not). The
evaluation results are -1 for True and 0 for False.

An example follows:
Sub MAIN
Count = 0
StartOfDocument

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

EditSearch "macro"
While EditSearchFound()

Count = Count + 1
EditSearch "macro"

Wend
Print "macro was found ";Count; " times"
End Sub

Subs
A "subroutine" is a group of statements that performs a task. In WordBASIC, a macro begins

with a Sub MAIN statement and ends with an End Sub statement. Every macro in Word must be
set up as a subroutine with these statements. You cannot nest subroutines; that is, a subroutine
cannot be located within another subroutine. The syntax follows:

Syntax: Sub Name [ParameterList]
Statement(s)
End Sub

The simplest macros consist of only one subroutine. As macros get more complicated, they
are usually written in smaller, separate units. If your macro performs the same action in different
parts of the program, you can write another subroutine. Suppose you want the computer to beep
before each message is displayed. One way to do this is shown in the following listing:

Sub MAIN
BeepMsg "Are you sure you want to quit?", 0
BeepMsg "Don't you want to save your work first?", 0
BeepMsg "This is your last chance. Choose OK to quit.", 65
End Sub

Sub BeepMsg (msg$, type)
Beep
MsgBox msg$,, type
End Sub

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

User-Defined Functions
You can define new functions in a manner similar to subroutines. Instead of using the

keyword Sub, you use the Function keyword. The syntax follows:

Syntax: Function Name [ParameterList]
Statement(s)
End Function

Defines a function. The ParameterList is a list of variables, separated by commas, for
receiving arguments to the function. Functions without parameters should not have parentheses.
The statements are used to produce a value that the function returns when called. An example
follows:

Function RndInt(n)

End Function

The Rnd() function returns a fractional value between 0 and 1. Sometimes it is useful to
generate an integral random number between 0 and some specific value; the preceding example
does this. The Function RndInt(n) line tells Word that a new function is being defined and that it
takes a single numeric parameter called n. The second line indicates that the value of the function
is the formula Int(Rnd()*n).

Every user-defined function includes an implied variable with the same name as the function.
Assigning a value to that variable defines the value that is to be returned from the function. A
function can contain more statements above and/or below the assignment, just as if it were a
subroutine.

A user-defined function returns a numeric value unless the name is terminated with a dollar
sign ($), which indicates that the function returns a string.

File Input-Output
WordBASIC supports the standard BASIC stream input-output (I/O) statements and

functions. However, record-based file I/O is not supported.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

You can have up to four files open at one time. Each file is assigned a number from 1 to 4.
This identifies the file to Word's macro processor. The # symbol indicates that the expression
following it is a file number. For example, Open "RBOW.TXT" For Input As #1 opens the
specified file for input and assigns the file number 1 to it. When accessed with other file
statements, the number 1 indicates which of the open files to use.

The following macro searches in a text file for a given string (case sensitive):

Sub MAIN
Rem Sets up a dialog record
Dim dlgrec As FileOpen
Rem Fills the dialog record with the defaults
GetCurValues dlgrec
dlgrec.Name = "*.TXT"
Rem Allows the user to change the values
Dialog dlgrec
Search$ = InputBox$("Search for what string?")
Rem Connects the specific file to stream 1
Open dlgrec.Name For Input As #1
Print "Searching"
Rem While not at the end of file 1 Reads one line of the file into Text$
Rem and exits from the search loop otherwise loops again
While Not (Eof(1))

Line Input #1, Text$
If Instr(Text$, Search$) Then

MsgBox Search$ + " was found in file: " + dlgrec.Name
Goto Found

End If
Wend
Beep
Rem Beeps at end of file
MsgBox Search$ + " was not found in file: " + dlgrec.Name
Found:
Rem Closes the file
Close
End Sub

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Special Bookmarks
Some statements can use the following special bookmarks:

Bookmark Definition
\Sel Current selection
\PrevSel1 Previous selection 1 where editing occurred (nil at start)
\PrevSel2 Previous selection 2 where editing occurred (nil at start)
\StartOfSel Start of selection
\EndOfSel End of selection
\Line Current line (first of selection)
\Char Current character (first of selection)
\Para Current paragraph (first of selection)
\Section Current section (first of selection)
\Doc Entire document
\Page Current page
\StartOfDoc Beginning of document
\EndOfDoc End of document
\Cell Cell
\Table Table
\HeadingLevel A heading level

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Macros: Reference

This chapter is a reference for constructing macros. It contains the syntax and a description of
each of the functions and statements in WordBASIC. These statements and functions are divided

into the following sections:

Introduction
The WordBASIC language consists of statements and functions described in the following

sections. A statement performs an action; Bold 1, for example, makes the selection bold. A
function produces, or "returns," a number or string of characters that represents information.
Most functions do not perform any action, but some do. Those that do perform an action usually
return a value indicating the success or failure of that action. A function is always followed by
parentheses. For example, Overtype 1 is a statement; Overtype() is a function. If a function ends
with $, it returns a string of characters. For example, the StyleName$() function returns a string
of characters representing the style name of the selection.

For Boolean operators, if a function returns 0 (zero), False is implied. Any other value
implies True. If a function can only be True or False, -1 is returned for True.

All statements that insert text are affected by the state of the Typing Replaces Selection
option of the Utilities Customize command. If this option is turned on, inserted text overwrites
selected text.

Measurements for statements should be entered in points (1/72 inch).

Macro programs have access to system information such as free memory and software
version numbers. Be aware, however, that free memory changes constantly. Values returned may
be only an approximation of free memory.

Statements can take arguments. In this chapter, a dollar sign ($) follows arguments that
accept a string of characters. Some arguments take a value or a string. The string can be Auto, in

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

the case of certain measurements, or a string such as 1 in, 2 cm, and so on. Word converts these
measurements to points. In this chapter, these arguments are followed by a dollar sign in brackets
([$]). This is a convention adopted for your information only; do not use the dollar sign when
you supply the arguments for actual macros.

Dialog Box Equivalents
Some statements are dialog box equivalents. That is, each of the statement arguments is

equivalent to an option in the dialog box for a corresponding command on the command menu.
The following conventions are used:

indicates that the status of the box is unknown.

take the following values: 0 selects the first option in the group; 1 selects the second option in the
group, and so on; -1 indicates that the status is unknown or ambiguous.

option buttons.

response. Combo box equivalents take string values.

You can set up the arguments to dialog box equivalent statements in two ways: you can use
the positional form by listing the argument values after the statement keyword, separated by
commas; or you can use the keyword form by following the statement keyword with the
argument name, preceded by a period and followed by an equal sign (=), which is in turn
followed by the argument value. An example of each method follows:

Positional form:
Keyword form:

The order in which argument values are specified is important when using the positional
form, so this form is most useful for statements with relatively few arguments. When using the
keyword form, you need to include only those arguments that you want to change from the
default, so this form is best if you want to avoid looking up or memorizing the syntax for
statements with numerous arguments. You can use both forms for one statement, but arguments
specified in the keyword form must follow arguments specified in the positional form.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Command buttons carry out actions. Command button equivalents are not arguments in the
traditional sense and are not included in statement syntax. They are discussed in the text
following the syntax line. Command button equivalents can be specified only with the keyword
form and must be appended to the argument list. You can specify only one command button per
statement.

Utility Statements and Functions

Abs()
Syntax: Num = Abs(n)
Returns the unsigned value of n.

Activate
Syntax: Activate WindowText$, [PaneNum]
Activates the window whose title bar is specified by WindowText$. If PaneNum is supplied,

a value of 1 or 2 activates the top pane and a value of 3 or 4 activates the bottom pane.

AppActivate
Syntax: AppActivate WindowText$, [Immediate]
Activates the application whose title bar is specified by WindowText$. If Immediate is 1,

Word immediately switches the focus to the other application. If Immediate is 0 (zero), and
Word does not have the focus,Word flashes its title bar, waits for the user to give the focus to
Word, and then activates the application.

AppInfo$()
Syntax: A$ = AppInfo$(TypeOfInfo)
Returns information about the state of Word.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

If TypeOfInfo is Result is
1 The environment string; for example, “Windows 2.11”
2 The version number of Word; for example, “1.00”
3 Word is in a special mode; for example, CopyText or

MoveText mode
4 X position of the Word window, measured from the left of

the screen in points
5 Y position of the Word window, measured from the top of

the screen in points
6 Width of the current document workspace in points
7 Height of the current document workspace in points
8 Returns —1 if the application is maximized
9 Amount of total conventional memory
10 Amount of total conventional memory available
11 Amount of total expanded memory
12 Amount of total expanded memory available
13 Returns —1 if a math coprocessor is installed
14 Returns —1 if a mouse is present
15 Amount of disk space available

Values are returned as strings. Use Val(AppInfo$(n)) to convert the string to a number, if
appropriate.

AppMaximize
Syntax: AppMaximize
Zooms the Word window to full screen size.

AppMaximize()
Syntax: Log = AppMaximize()
Returns a nonzero value if the window is maximized.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

AppMinimize
Syntax: AppMinimize
Minimizes the Word window to an icon.

AppMinimize()
Syntax: Log = AppMinimize()
Returns a nonzero value if the window is minimized.

AppMove
Syntax: AppMove XPos, YPos
Moves the Word window to XPos, YPos relative to the top left of the screen. Values are in

points.

AppRestore
Syntax: AppRestore
Restores the Word window from a maximized/minimized state.

AppSize
Syntax: AppSize XPos, YPos
Resizes the Word window. Values are in points.

Asc()
Syntax: Num = Asc(A$)
Returns the ANSI character code of the first character in A$.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Beep
Syntax: Beep [Beeptype]
Causes the computer's speaker to beep. Beeptype is 1, 2, 3, or 4. If Beeptype is omitted, it is

assumed to be 1. The exact tone produced will depend on your hardware configuration. A typical
use of Beep is to signal the end of a macro.

Bold
Syntax: Bold [On]
Without the argument, toggles bold for the entire selection. If On is nonzero, makes the entire

selection bold. If On is 0 (zero), removes bold from the entire selection.

Bold()
Syntax: Num = Bold()
Returns 0 (zero) if none of the selection is bold, 1 if all of the selection is bold, or -1 if part

of the selection is bold.

BookmarkName$()
Syntax: A$ = BookmarkName$(Count)
Returns the name of the bookmark. Count must be in the range from 1 to CountBookmarks().

Call
Syntax: [Call] Subname [ParameterList]
Transfers control to a subroutine.

Cancel
Syntax: Cancel
Terminates a mode such as ColumnSelect and does not perform the action. See "OK," later in

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

this section.

CenterPara
Syntax: CenterPara
Centers the currently selected paragraph(s).

CenterPara()
Syntax: Num = CenterPara()
Returns 0 (zero) if none of the selected paragraphs are centered, 1 if all of the selected

paragraphs are centered, or -1 if more than one kind of paragraph alignment is used.

ChangeCase
Syntax: ChangeCase [Type]
Without an argument, alternates the case of the current selection between all lowercase, all

caps, and initial caps based on the first two characters of the selection. If Type is 0 (zero), sets
the text to all lowercase. If Type is 1, sets the text to all caps. If Type is 2, sets the text to initial
caps.

ChangeRulerMode
Syntax: ChangeRulerMode
Cycles the ruler between Paragraph, Table, and Document modes.

CharColor
Syntax: CharColor Color
Sets the character color of the selection to Color. The color may be one of the following:

Color argument Description
0 Auto (color specified by the Control Panel setting)

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

1 Black
2 Blue
3 Cyan
4 Green
5 Magenta
6 Red
7 Yellow
8 White

CharColor()
Syntax: Num = CharColor()
Returns the numbers set by the CharColor statement, or -1 if all the selected text is not the

same color. See CharColor.

CharLeft
Syntax: CharLeft [Repeat], [Select]
Moves the selection left by Repeat characters. If the repeat argument is omitted, 1 is

assumed. If Select is nonzero, the selection is extended to the left or right by Repeat characters.

CharLeft()
Syntax: Log = CharLeft([Repeat], [Select])
Moves the selection left by Repeat characters. Returns 0 (zero) if the action cannot be

performed.

CharRight
Syntax: CharRight [Repeat], [Select]
Moves the selection right by Repeat characters. If the Repeat argument is omitted,

1 is assumed. If Select is nonzero, the selection is extended to the right by Repeat characters.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

If Select is 0 (zero) or omitted, the selection is not extended.

CharRight()
Syntax: Log = CharRight([Repeat], [Select])
Moves the selection right by Repeat characters. Returns 0 (zero) if the action cannot be

performed.

ChDir
Syntax: ChDir Name$
Changes directories to the one specified by Name$.

Chr$()
Syntax: A$ = Chr$(AnsiCode)
Returns the character whose ANSI code is AnsiCode.

Close
Syntax: Close [[#]StreamNumber]
Closes the file attached to StreamNumber. If StreamNumber is not supplied, all open files are

closed.

ClosePane
Syntax: ClosePane
Closes the current window pane. You use this statement to close a pane in a split document, a

header/footer pane, a footnote pane, etc. This does not close a document window, only a pane in
a window.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

CloseUpPara
Syntax: CloseUpPara
Makes the space before and after the selected paragraph 0 (zero).

CmpBookmarks()
Syntax: Num = CmpBookmarks(Bookmark1$, Bookmark2$)
Compares two named bookmarks and returns one of the following values:

Return value Meaning
0 Bookmark1$ and Bookmark2$ are equivalent
1 Bookmark1$ is entirely below Bookmark2$
2 Bookmark1$ is entirely above Bookmark2$
3 Bookmark1$ is below and inside Bookmark2$
4 Bookmark1$ is inside and above Bookmark2$
5 Bookmark1$ encloses Bookmark2$
6 Bookmark2$ encloses Bookmark1$
7 Bookmark1$ and Bookmark2$ begin at the same point, but

Bookmark1$ is longer
8 Bookmark1$ and Bookmark2$ begin at the same point, but

Bookmark2$ is longer
9 Bookmark1$ and Bookmark2$ end at the same place, but

Bookmark1$ is longer
10 Bookmark1$ and Bookmark2$ end at the same place, but

Bookmark2$ is longer
11 Bookmark1$ is below and adjacent to Bookmark2$
12 Bookmark1$ is above and adjacent to Bookmark2$
13 One or more of the bookmarks does not exist

ColumnSelect
Syntax: ColumnSelect
Starts the column selection mode. Cancel ends this mode.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ControlRun
Syntax: ControlRun Application
Equivalent to the Control Run dialog box. Runs an application from the Word Control menu.

Statement Effect
ControlRun 0 Runs Clipboard
ControlRun 1 Runs Control Panel

CopyBookmark
Syntax: CopyBookmark Bookmark1$, Bookmark2$
Sets Bookmark2$ equal to Bookmark1$.

CopyFormat
Syntax: CopyFormat
Copies the formatting of the selected text.

CopyText
Syntax: CopyText
Copies text. Equivalent to the copy to key (Shift+F2).

CountBookmarks()
Syntax: Num = CountBookmarks()
Returns the number of bookmarks you have defined in the document.

CountFiles()
Syntax: Num = CountFiles()
Returns the number of names in the file list on the File menu.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

CountFonts()
Syntax: Num = CountFonts()
Returns the number of fonts available with the printer you've selected.

CountGlossaries()
Syntax: Num = CountGlossaries([Context])
Returns the number of glossaries defined in the given context. Context can be 0 (zero) for

global or 1 for document template. The default is global.

CountMacros()
Syntax: Num = CountMacros([Context], [All])
Returns the number of programs defined in the given context. Context can be 0 (zero) for

global or 1 for document template. The default is global.

If All is nonzero, built-in macros are included.

CountStyles()
Syntax: Num = CountStyles([Context], [All])
Returns the number of styles defined in the given context. Context can be 0 (zero) for the

document or 1 for document template. The default is document.

If All is nonzero, built-in styles are included.

CountWindows()
Syntax: Num = CountWindows()
Returns the number of windows in the list on the Window menu.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Date$()
Syntax: A$ = Date$()
Returns today's date.

DDEExecute
Syntax: DDEExecute ChanNum, ExecuteString$
Sends an execute message over the channel ChanNum with an ExecuteString$, which is

defined by the receiving application. Use the format described under SendKeys to send specific
key sequences.

The channel number must have been opened by the DDEInitiate() function.

If the channel is not valid or if the receiving application refuses to execute the instructions, an
error is generated.

DDEInitiate()
Syntax: ChanNum = DDEInitiate(App$, Topic$)
Opens a DDE channel to an application. App$ is the application name defined by the other

application. Topic$ describes something in the application you are accessing, usually the
document containing the data you wish to use.

If DDEInitiate() is successful, it returns the number of the open channel. All subsequent DDE
macro functions use this number to specify the channel. This function returns 0 (zero) if it fails to
open a channel.

DDEPoke
Syntax: DDEPoke ChanNum, Item$, Data$
Sends the data to the item specified by Item$ in the application connected to channel

ChanNum. ChanNum must have been opened by the DDEInitiate() function. If DDEPoke is
unsuccessful, an error is generated.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

DDERequest$()
Syntax: A$ = DDERequest$(ChanNum, Item$)
Requests the information specified by Item$ over the DDE channel specified by ChanNum.

ChanNum must have been opened by the DDEInitiate() function. If DDERequest$() is
unsuccessful, a null string ("") is returned.

DDERequest$() returns the data in CF_TEXT format. Pictures or text in Rich Text Format
cannot be transferred.

DDETerminate
Syntax: DDETerminate ChanNum
Closes the channel ChanNum. The channel must have been opened with the DDEInitiate()

function.

DDETerminateAll
Syntax: DDETerminateAll
Similar to DDETerminate, but closes all open channels.

Declare
Syntax: Declare Sub SubName Lib LibName [ParameterList] [Alias ModuleName]
Syntax: Declare Function FunctionName Lib LibName [ParameterList] [Alias
ModuleName]
Declares an external library function as a subroutine or function inside a macro.

DeleteBackWord
Syntax: DeleteBackWord
Deletes the word immediately preceding the selection but does not place it on the Clipboard.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

DeleteWord
Syntax: DeleteWord
Deletes the word immediately following the selection but does not place it on the Clipboard.

Dim
Syntax: Dim [Shared] Var [(Size)] [, Var [(Size)]...]
Declares a variable's type and allocates storage space for the variable. For more information

on the Dim statement, see Macros: Introduction.

DisableInput
Syntax: DisableInput [Disable]
Prevents the Esc key from interrupting a macro. The Esc key is enabled by setting Disable to

0 (zero).

Statement Effect
DisableInput 0 Disable inactive
DisableInput 1 Disable active (default)

DocClose
Syntax: DocClose [Save]
Closes the current window or pane. If Save is 1, Word saves the document if it has been

edited (considered "dirty") since the last save; if Save is 2, Word does not save the document, but
closes the window or pane. If Save is 0 or omitted, Word prompts the user to save the document
if it has been edited.

DocMaximize
Syntax: DocMaximize
Zooms the document window to application window size. If it is already maximized, the

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

screen is displayed in the restored state.

DocMaximize()
Syntax: Log = DocMaximize()
Returns -1 if the window is maximized.

DocMove
Syntax: DocMove XPos, YPos
Moves the document window to XPos, YPos relative to the top-left corner of the document

area. Values are in points.

DocRestore
Syntax: DocRestore
Restores the Word window from a maximized state.

DocSize
Syntax: DocSize Width, Height
Sizes the document window to Width, Height. Values are in points.

DocSplit
Syntax: DocSplit Percentage
Splits the current window at the given percentage height.

DocSplit()
Syntax: Num = DocSplit()
Returns the current window split position as a percentage of the window height, or 0 (zero) if

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

the window isn't split.

DoFieldClick
Syntax: DoFieldClick
Simulates a mouse button double-click within the GOTOBUTTON and MACROBUTTON

fields' prompt. See the full Technical Reference for information on these fields.

DoubleUnderline
Syntax: DoubleUnderline [On]
Without the argument, toggles double underlining for the entire selection. If On is 1, Word

makes the entire selection double underlined. If On is 0 (zero), Word removes double
underlining from the entire selection.

DoubleUnderline()
Syntax: Num = DoubleUnderline()
Returns 0 (zero) if none of the selection is double underlined, 1 if all of the selection is

double underlined, or -1 if part of the selection is double underlined or more than one kind of
underlining is used.

EditClear
Syntax: EditClear [Count]
Deletes the selection without changing the contents of the Clipboard. If the selection is an

insertion point, deletes the character to the right of the insertion point. If Count is supplied,
deletes the specified number of characters from the right of the insertion point.

If Count is a negative number, deletes to the left of the insertion point.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

EditCopy
Syntax: EditCopy
Equivalent to the Copy command on the Edit menu. Copies the selection to the Clipboard.

EditCut
Syntax: EditCut
Equivalent to the Cut command on the Edit menu. The selection is placed on the Clipboard

and then deleted.

EditGlossary
Syntax: EditGlossary Name$, [Context]
Equivalent to the Edit Glossary dialog box. Used to define, delete, and insert glossary entries.

Context can be 0 (zero) for global or 1 for document template. The default is global.

The default action is Insert. You can perform other actions by appending the command
button name from the dialog box (Define or Delete) to the statement.

EditGoTo
Syntax: EditGoTo Destination$
Equivalent to the Edit Go To dialog box. Destination$ is a bookmark name, a page number or

goto string. See the special bookmarks in the preceding section and Moving the Insertion Point in
the User's Reference for more information on bookmarks.

EditHeaderFooter
Syntax: EditHeaderFooter [Type], [StartingNum[$]], [NumFormat], [HeaderDistance[$]],
[FooterDistance[$]], [FirstPage], [OddAndEvenPages]
Equivalent to the Edit Header/Footer dialog box. Opens the header or footer pane for editing.

The arguments correspond to a check box. If the argument is 1, the check box is on. If the

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

argument is 0 (zero), the check box is off.

EditHeaderFooterLink
Syntax: EditHeaderFooterLink
Links the header/footer with a previous section. This is not possible in the first section of a

document.

EditPaste
Syntax: EditPaste
Equivalent to the Paste command on the Edit menu. Copies the contents of the Clipboard to

the insertion point.

EditPasteLink
Syntax: EditPasteLink [AutoUpdate]
Equivalent to the Edit Paste Link dialog box. Pastes a DDE (Dynamic Data Exchange) field.

If AutoUpdate is 1, EditPasteLink pastes a DDEAUTO field.

For information on DDE, see the full Technical Reference.

EditReplace
Syntax: EditReplace [Search$], [Replace$], [WholeWord], [MatchCase], [Confirm],
[Format]
Equivalent to the Edit Replace dialog box. Replaces the Search$ string with Replace$. If

Search$ and Replace$ are not supplied, the strings used in the previous search and/or replace are
used.

To replace formatting in addition to, or instead of, text, use EditReplaceChar,
EditReplacePara, EditSearchChar, or EditSearchPara first to set up the formatting, then run
EditReplace or EditSearch with Format set to 1.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

EditReplaceChar
Syntax: EditReplaceChar [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps],

[Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]

Dialog box equivalent; defines the character formatting EditReplace uses to format
replacement text. See "FormatCharacter" later in this section.

EditReplacePara
Syntax: EditReplacePara [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]],
[Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext],
[Border], [Pattern], [PageBreak], [NoLineNum]
Dialog box equivalent; defines the paragraph formatting EditReplace uses to format

replacement text. The arguments specify options available in the Format Paragraph dialog box.
See "FormatParagraph," later in this section.

EditSearch
Syntax: EditSearch [Search$], [WholeWord], [MatchCase], [Direction], [Format]
Equivalent to the Edit Search dialog box. Searches for the specified Search$.

 The arguments correspond to a check box. If the argument is 1, the check box is on. If the
argument is 0 (zero), the check box is off.

EditSearchChar
Syntax: EditSearchChar [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps],
[Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]
Dialog box equivalent; defines the character formatting EditSearch and EditReplace use to

find formatted text. See "FormatCharacter," later in this section.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

EditSearchFound()
Syntax: Log = EditSearchFound()
Returns -1 if the last EditSearch was successful. Returns 0 (zero) if not.

Sub MAIN
Count = 0
StartOfDocument
EditSearch "macro"
While EditSearchFound()
 Count = Count + 1

EditSearch "macro"
Wend
Print "macro was found ";Count; " times"
End Sub

EditSearchPara
Syntax: EditSearchPara [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]],
[Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext],
[Border], [Pattern], [PageBreak], [NoLineNum]
Dialog box equivalent; defines the paragraph formatting EditSearch and EditReplace use to

find formatted text. The arguments specify options available in the Format Paragraph dialog box.
See "Format Paragraph," later in this section.

EditSelectAll
Syntax: EditSelectAll
Selects the entire document.

EditSummaryInfo
Syntax: EditSummaryInfo [Title$], [Subject$], [Author$], [Keywords$], [Comments$],
[Directory$], [Template$], [CreateDate$], [LastSavedDate$], [LastSavedBy$],

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

[RevisionNumber], [EditTime$], [LastPrintedDate$], [NumPages], [NumWords],
[NumChars], [FileName$]
Equivalent to the Edit Summary Info dialog box. Sets the summary information and allows

access to the Statistics dialog box. All the options in the Statistics dialog box are read-only
except for the total editing time, which can be set with WordBASIC.

You can append the Update command button name to update the summary information.

EditTable
Syntax: EditTable [Modify], [ShiftCells]
Equivalent to the Edit Table dialog box. Modify is 0 (zero) for Row, 1 for Column, or 2 for

Selection. ShiftCells is 0 for Horizontally or 1 for Vertically. You can delete, merge, or split
cells by appending the Delete, MergeCells, or SplitCells command button name.

EditUndo
Syntax: EditUndo
Equivalent to the Undo command on the Edit menu. Undoes the last action, if possible. You

can undo certain Word actions, such as Cut and Paste. Some actions can't be undone.

EmptyBookmark()
Syntax: Log = EmptyBookmark(Name$)
Returns -1 if Name$ is empty (an insertion point), or 0 (zero) if Name$ is not empty.

EndOfColumn
Syntax: EndOfColumn [Select]
Moves the insertion point to the bottom cell in the table column. If Select is a nonzero value,

the selection is extended.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

EndOfDocument
Syntax: EndOfDocument [Select]
Moves the selection to the end of the document. If Select is a nonzero value, the selection is

extended.

EndOfLine
Syntax: EndOfLine [Select]
Moves the selection to the end of the line. If Select is a nonzero value, the selection is

extended.

EndOfRow
Syntax: EndOfRow [Select]
Moves the selection to the end of the last cell in the table row. If Select is a nonzero value,

the selection is extended.

EndOfWindow
Syntax: EndOfWindow [Select]
Moves the selection to the end of the window. If Select is a nonzero value, the selection is

extended.

Eof()
Syntax: Log = Eof(StreamNumber)
Returns -1 when the end of the file attached to the stream number has been reached.

Err
Syntax: Err
This is a special variable that contains the error code for the most recent error condition.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Error
Syntax: Error ErrorNumber
Displays a message corresponding to an error situation. ErrorNumber is an error code.

ExistingBookmark()
Syntax: ExistingBookmark(Bookmark$)
Returns -1 if Bookmark$ exists, or 0 (zero) if not.

ExpandGlossary
Syntax: ExpandGlossary
Expands the word closest to the insertion point into the corresponding glossary text.

ExtendSelection
Syntax: ExtendSelection [Character$]
Turns on extend mode, if it is not already turned on. If extend mode is already turned on,

selection is extended to next unit; for example, if a character is selected, ExtendSelection extends
the selection to the whole word. If Character$ is specified, the selection is extended to that
character.

File1
Syntax: File1
Equivalent to selecting the first listed file on the File menu. Opens the first file. An error is

generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if
only three files are listed under the File menu.

File2
Syntax: File2

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Equivalent to selecting the second listed file on the File menu. Opens the second file. An
error is generated if you attempt to open a nonexistent file slot. For example, you cannot use
File4 if only three files are listed under the File menu.

File3
Syntax: File3
Equivalent to selecting the third listed file on the File menu. Opens the third file. An error is

generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if
only three files are listed under the File menu.

File4
Syntax: File4
Equivalent to selecting the fourth listed file on the File menu. Opens the fourth file. An error

is generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if
only three files are listed under the File menu.

FileClose
Syntax: FileClose [Save]
Equivalent to the Close command on the File menu. Closes the current file and associated

windows. The Save argument determines whether a save is forced: 1 forces a save, 2 forces no
save, 0 prompts the user to save edited documents.

FileExit
Syntax: FileExit [Save]
Equivalent to the Exit command on the File menu. Quits Word. If any open documents have

been edited and Save is omitted or is 0 (zero), you are prompted to save each changed document.
If Save is 1, all edited documents are automatically saved before exiting. If Save is 2, the
documents are not saved.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

FileFind
Syntax: FileFind [SortBy], [SearchList$], [Title$], [Subject$], [Author$], [Keywords$],
[SavedBy$], [Text$], [DateCreatedFrom$], [DateCreatedTo$], [DateSavedFrom$],
[DateSavedTo$], [MatchCase], [SearchAgain]
Equivalent to the File Find dialog box. It can be used to change the search criteria in

subsequent FileFind statements. If you record a macro with FileFind, any other actions you
perform in the File Find dialog box at that time, such as opening or deleting a document, editing
summary information, or printing, are also recorded.

FileName$()
Syntax: A$ = FileName$(n)
Returns the nth file in the file list. If n is 0 (zero), the name of the current file is returned. If n

is greater than the number of files in the file cache, an error is generated. If there is no current
document, FileName$(0) returns an empty string.

FileNew
Syntax: FileNew [NewTemplate], [Template$]
Equivalent to the File New dialog box.

FileOpen
Syntax: FileOpen Name$, [ReadOnly]
Equivalent to the File Open dialog box. Opens the named document. An error is generated if

the document does not exist. If ReadOnly is 1, the document is opened as read-only.

FilePrint
Syntax: FilePrint [Type], [NumCopies], [Range], [From$], [To$], [Reverse], [Draft],
[UpdateFields], [PaperFeed], [Summary], [Annotations], [ShowHidden], [ShowCodes],
[FileName$]

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Equivalent to the File Print dialog box.

FilePrinterSetup
Syntax: FilePrinterSetup [Printer$]
Equivalent to the File Printer Setup dialog box. Printer$ is the name of the new printer to be

activated. Enter this argument exactly as it appears in the File Printer Setup dialog box.

The Setup command button name can be appended to display the dialog box showing the
printer options.

FilePrintMerge
Syntax: FilePrintMerge [From], [To]
Equivalent to the File Print Merge dialog box. If From or To is nonzero, Word merges the

specified records only.

The New Document command button name can be appended to direct the output to a new
document.

FilePrintPreview
Syntax: FilePrintPreview [On]
Equivalent to the Print Preview command on the File menu. Without On, toggles print

preview mode. If On is nonzero, turns on print preview mode; if On is 0 (zero), turns off print
preview mode.

FilePrintPreviewBoundaries
Syntax: FilePrintPreviewBoundaries [On]
Displays the text boundaries if On is nonzero; turns off display if On is 0 (zero). If On is

omitted, toggles the display of text boundaries.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

FilePrintPreviewPages
Syntax: FilePrintPreviewPages [Pages]
Without the argument, toggles display between one and two pages.

Pages argument Description
0 Toggles the display state (default)
1 One page
2 Two pages

FileSave
Syntax: FileSave
Equivalent to the Save command on the File menu. Saves the current document.

FileSaveAll
Syntax: FileSaveAll [Save]
Equivalent to the Save All command on the File menu. Prompts the user to save all changed

files including NORMAL.DOT. If Save is 1, all edited documents are automatically saved. If
Save is 2, the documents are not saved. If Save is 0 or omitted, Word prompts the user to save all
changed files.

FileSaveAs
Syntax: FileSaveAs [Name$], [Format], [FastSave], [CreateBackup], [LockAnnot]
Equivalent to the File Save As dialog box. Saves the current document with a new name

and/or format. Name$ specifies the new name. Format specifies the new format.

Format argument Document type
0 Normal (Word format)
1 Document Template
2 Text Only (extended characters saved in ANSI

character set)

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

3 Text+Breaks (plain text with line breaks; extended
characters saved in ANSI character set)

4 Text Only (extended characters saved in IBM PC
character set)

5 Text+Breaks (text with line breaks; extended characters
saved in IBM PC character set)

6 Rich Text Format (RTF)

Other file formats can be specified. They must be listed in your WIN.INI file under the
Microsoft Word entry.

Files$()
Syntax: A$ = Files$(FileSpec$)
Returns the first filename matching FileSpec$. If FileSpec$ is not supplied, the next file

matching the last-used FileSpec$ is returned. This function can be used to get a list of files
matching a FileSpec$ by specifying the FileSpec$ on the first iteration, and then omitting it
thereafter. If no files match, a null string ("") is returned. Files$ (".") returns the current
directory.

Font
Syntax: Font Name$, [Size]
Applies the named font to the selection. You can include the Size argument instead of

following this statement with the FontSize statement.

Font$()
Syntax: A$ = Font$()
Syntax: A$ = Font$(Count)

Returns the font name of the current selection. If the selection has more than one font, a null
string is returned. If Count is supplied, Font$() returns the name of the font Count. Count must
be in the range 1 to CountFonts().

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

FontSize
Syntax: FontSize Size
Sets the size of the current selection in points.

FontSize()
Syntax: Num = FontSize()
Returns the font size of the current selection. If the selection has more than one font size, 0

(zero) is returned.

For...Next
Syntax: For CounterVariable = Start To End [Step Increment]
Statement(s)

Next [CounterVariable]

Executes the statements between For and Next as many times as it takes the CounterVariable
to go from the Start value to the End value. The Increment is the value to increment the counter
(usually 1). For more information on the For and Next statements, see Macros: Introduction.

FormatCharacter
Syntax: FormatCharacter [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps],
[Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]
Equivalent to the Format Character dialog box. Applies character formatting to the selection.

Some arguments take measurements in points. Other arguments correspond to a check box.

FormatDefineStyles
Syntax: FormatDefineStyles Name$, [BasedOn$], [NextStyle$], [AddToTemplate],
[NewName$], [FileName$], [Source]
Equivalent to the Format Define Styles dialog box. Defines a new style with the specified

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Name$. If a style with that name already exists, that style is made the current style.
FormatDefineStyles sets up the style; to define the character, paragraph, and tab formats, use the
FormatDefineStylesChar, FormatDefineStylesPara, and FormatDefineStylesTabs statements
described later in this section. To redefine an existing style, include the specific arguments with
the FormatDefineStyles statement.

The BasedOn$ argument specifies a style on which to base the new style. The NextStyle$
argument specifies the style to be applied after the new style.

AddToTemplate can be 0 for the document only, or 1 for the document and its template.

The Delete, Rename, and Merge command button names can be appended.

The NewName$ argument specifies a new name for the style; it is used only in conjunction
with the Rename command button.

The FileName$ argument is used only with the Merge command button. It specifies the
template or document whose style sheet is to be merged with that of the current document or
template.

Source is used only in conjunction with the Merge command button name, and can be 0
(zero) (from the current document or template to a specified document or template) or 1 (from a
specified document or template to the current document or template).

FormatDefineStylesChar
Dialog box equivalent; defines the current style with the specified character properties. This

statement takes the same arguments as its corresponding format function. See "FormatCharacter,"
earlier in this section.

FormatDefineStylesPara
Dialog box equivalent; defines the current style with the specified paragraph properties. This

statement takes the same arguments as its corresponding format function. See
"FormatParagraph," later in this section.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

FormatDefineStylesPosition
Dialog box equivalent; defines the current style with the specified position properties. This

statement takes the same arguments as its corresponding format function. See "FormatPosition,"
later in this section.

FormatDefineStylesTabs
Dialog box equivalent; defines the current style with the specified tab properties. This

statement takes the same arguments as its corresponding format function. See "FormatTabs,"
later in this section.

FormatDocument
Syntax: FormatDocument [PageWidth[$]], [PageHeight[$]], [DefTabs[$]], [TopMargin[$]],
[BottomMargin[$]], [LeftMargin[$]], [RightMargin[$]], [Gutter[$]], [MirrorMargins],
[FootnotesAt], [StartingNum[$]], [RestartNum], [Template$], [WidowControl]
Equivalent to the Format Document dialog box. Applies document formatting properties.

Some arguments take measurements in points. Other arguments correspond to a check box.

To set the global or template default, append the SetDefault command button name to this
statement. This is a powerful argument that changes the default document properties to those
specified in the statement.

FormatParagraph
Syntax: FormatParagraph [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]],
[Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext],
[Border], [Pattern], [PageBreak], [NoLineNum]
Equivalent to the Format Paragraph dialog box. Applies paragraph formatting.

The LeftIndent[$], RightIndent[$], and FirstIndent[$] arguments specify the amount of left,
right, and first-line indents, respectively. The Before[$] and After[$] arguments specify the
amount of spacing above and below a paragraph, respectively. The LineSpacing[$] argument

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

specifies the amount of spacing for all lines in a paragraph. The Style$ argument specifies a style
to be applied to a paragraph. The KeepTogether and KeepWithNext arguments prevent page
breaks within a paragraph and between paragraphs, respectively.

The PageBreak argument inserts a page break before printing the paragraph. The
NoLineNum argument turns off line numbering for the paragraph.

FormatPicture
Syntax: FormatPicture [Border], [ScaleY], [ScaleX], [CropTop[$]], [CropLeft[$]],
[CropBottom[$]], [CropRight[$]]
Equivalent to the Format Picture dialog box. Applies picture formatting properties.

Some arguments take measurements in points. Other arguments correspond to check boxes.

FormatPosition
Syntax: FormatPosition [Horizontal[$]], [HRelativeTo], [Vertical[$]], [VRelativeTo],
[DistanceFromText], [ParagraphWidth[$]]
Equivalent to the Format Position dialog box. Applies position formatting to the selected

paragraphs.

The Reset command button name can be appended to cancel the position formatting of the
paragraphs.

FormatSection
Syntax: FormatSection [Columns], [ColumnSpacing[$]], [ColLine], [SectionStart],
[Footnotes], [LineNum], [StartingNum[$]], [FromText[$]], [CountBy], [NumMode],
[VertAlign]
Equivalent to the Format Section dialog box. Applies section formatting properties to the

selection. Some arguments take measurements in points or numbers. Other arguments correspond
to check boxes.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

FormatStyles
Syntax: FormatStyles Name$, [Create]
Equivalent to the Format Styles dialog box. Applies the style in Name$ to the selected

paragraphs. If the style does not exist and Create is not specified or is 0 (zero), an error is
generated. If Create is specified as 1, the style is created with the properties of the selection, if it
doesn't already exist.

FormatTable
Syntax: FormatTable [FromColumn], [Column], [ColumnWidth], [SpaceBetweenCols[$]],
[IndentRows[$]], [MinimumRowHeight], [OutlineBorder], [TopBorder], [BottomBorder],
[InsideBorder], [LeftBorder], [RightBorder], [AlignRows], [ApplyTo]
Equivalent to the Format Table dialog box. When recording, pressing the Next or Prev

Columns command button records a new FormatTable command.

FormatTabs
Syntax: FormatTabs [Position], [Align], [Leader]
Equivalent to the Format Tabs dialog box. Position is a measurement in points.

Align argument Alignment
0 Left
1 Centered
2 Right
3 Decimal

Leader argument Leader character
0 None
1 Dot
2 Dash
3 Underline

Set is the default action. You can also clear specified tabs or clear all tabs by appending the
Clear or ClearAll command button name to the statement.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Function...End Function
Syntax:

Statement(s)

End Function

Defines a function. The ParameterList is a list of variables, separated by commas, for
receiving arguments to the function. For more information on user-defined functions, see
Macros: Introduction.

GetBookmark$()
Syntax: A$ = GetBookmark$(BookmarkName$)
Returns the text at the specified bookmark.

GetCurValues
Syntax: GetCurValues DialogRecord
Stores in DialogRecord the current values for a previously dimensioned dialog box. For more

information, see Macros: Introduction.

GetGlossary$()
Syntax: A$ = GetGlossary$(Name$, [Context])
Returns the text of the glossary entry in Name$. The Context is 0 (zero) for global (default)

or 1 for document template.

GetProfileString$()
Syntax: A$ = GetProfileString$([App$], Key$)
Gets a value from the current WIN.INI file. App$ is the name of the Microsoft Windows

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

application. If the application is not specified, the string [Microsoft Word] is used. If the Key$ is
not found, the function returns a null string.

GlossaryName$()
Syntax: A$ = GlossaryName$(Count, [Context])
Returns the name of the glossary defined in the given context (global or document template).

Count must be in the range from 1 to CountGlossaries(Context). The name is taken from the list
in the given context. Context is 0 (zero) for global, 1 for document template.

GoBack
Syntax: GoBack
Toggles among the last three selections where text or formatting has changed.

Goto
Syntax: Goto Label/LineNumber
Branches unconditionally to a label or line number.

GrowFont
Syntax: GrowFont
Increases the size of the selected font. Can be used either on the selection, or at the insertion

point.

HangingIndent
Syntax: HangingIndent
Sets the indent of the selection to the next tab stop in the first paragraph. Sets the first line of

the paragraph flush with the left margin.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Help
Syntax: Help
Activates Help. Equivalent to pressing F1.

HelpAbout
Syntax: HelpAbout
Displays a dialog box with the Word version number and copyright information.

HelpActiveWindow
Syntax: HelpActiveWindow
Activates Help for the active window.

HelpContext
Syntax: HelpContext
Activates context-sensitive Help. Equivalent to pressing Shift+F1.

HelpIndex
Syntax: HelpIndex
Displays the list of Help topics.

HelpKeyboard
Syntax: HelpKeyboard
Displays list of keyboard Help topics.

HelpTutorial
Syntax: HelpTutorial

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Starts the Tutorial.

HelpUsingHelp
Syntax: HelpUsingHelp
Displays Help topics on how to use Help.

Hidden
Syntax: Hidden [On]
Without an argument, toggles hidden text for the entire selection. If On is nonzero, makes the

entire selection hidden text if the first character is hidden. If On is 0 (zero), removes hidden text
from the entire selection.

Hidden()
Syntax: Num = Hidden()
Returns 0 (zero) if none of the selection is hidden text, 1 if all of the selection is hidden text,

or -1 if part of the selection is hidden text.

HLine
Syntax: HLine [Count]
Scrolls horizontally to the right by Count lines. If Count is not specified, one line is the

default. "Lines" mean the amount the screen is scrolled by clicking the mouse in a horizontal
scroll bar arrow. A negative Count scrolls to the left.

HPage
Syntax: HPage [Count]
Scrolls horizontally by Count screens. If Count is not specified, one screen is the default. A

negative Count scrolls to the left.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

HScroll
Syntax: HScroll Percentage
Scrolls horizontally the specified percentage of the document width.

HScroll()
Syntax: Num = HScroll()
Returns the current horizontal scroll position as a percentage of the document width.

IconBarMode
Syntax: IconBarMode
Activates icon bar mode.

If...ElseIf...Else...End If
Syntax:
Syntax:

Statement(s)

[ElseIf Condition2 Then

Statement(s)]

[Else

Statement(s)]

End If
Performs conditional execution or branching, depending on the expressions. The conditions

in an If...ElseIf...Else...End If block can be any numeric expressions in WordBASIC. For more
information, see Macros: Introduction.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Indent
Syntax: Indent
Indents the selection. The indent is aligned with the next tab stop. Indent does not change a

first-line indent.

Input
Syntax: Input [#]StreamNumber, Variable, [Variable]
Reads a line from the file specified by #StreamNumber into the variables listed. The line read

from the file is separated into individual values by commas. If a StreamNumber is not specified,
you are prompted in the status bar.

Input$()
Syntax: A$ = Input$(n, StreamNumber)
Reads n characters from the file specified by StreamNumber.

InputBox$()
Syntax: A$ = InputBox$(Prompt$, [Title$], [Default$])
Displays an editable dialog box. Returns the text that was in the box when OK was chosen. If

you specified a default, it is loaded into the dialog box when it is displayed.

Insert
Syntax: Insert Text$
Inserts the given text at the insertion point. Nonprinting characters are inserted as Chr$(n)

statements.

Value Character inserted
Chr$(9) Tab
Chr$(11) Linefeed
Chr$(30) Nonbreaking hyphen

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Chr$(31) Optional hyphen
Chr$(34) Quotation marks
Chr$(160) Nonbreaking space

InsertBookmark
Syntax: InsertBookmark Name$
Equivalent to the Insert Bookmark dialog box. Creates or deletes the named bookmark. If the

Delete command button is appended, the bookmark is deleted. If Delete is not specified, the
bookmark is created at the current selection.

If you specify a nonexistent bookmark for deletion, an error is generated.

InsertBreak
Syntax: InsertBreak Type
Equivalent to the Insert Break dialog box. Inserts a page, section, or column break at the

current selection.

Type argument Break type
0 Page
1 Column

The following are section breaks:

Type argument Break type
2 Next
3 Continuous
4 Even
5 Odd

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

InsertColumnBreak
Syntax: InsertColumnBreak
Inserts a column break at the insertion point. If the insertion point is in a table, the break is

inserted above the row in which the insertion point is located.

InsertDateField
Syntax: InsertDateField
Inserts a DATE field at the selection.

InsertField
Syntax: InsertField Field$
Equivalent to the Insert Field dialog box. Inserts the specified field at the selection. Do not

include the field characters in Field$. For more information on inserting fields, see the full
Technical Reference.

InsertFieldChars
Syntax: InsertFieldChars
Inserts field characters ({ }) at the selection.

InsertFile
Syntax: InsertFile Name$, [Range$], [Link]
Equivalent to the Insert File dialog box. Inserts the named file at the current selection.

Range$ refers to a bookmark if Name$ refers to a Word document. If Name$ refers to
another document type (for example, a Microsoft Excel worksheet), then Range$ refers to a
named range. Only that part of the file is inserted. If Link is 1, a link to the file is inserted instead
of the actual file.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

InsertFootnote
Syntax: InsertFootnote [Reference$]
Equivalent to the Insert Footnote dialog box. Inserts a footnote at the current selection.

Reference$ is footnote reference text that you supply.

To insert a footnote separator, continued footnote separator or notice for continued footnotes,
append the Separator, ContSeparator, or ContNotice command button name.

InsertIndex
Syntax: InsertIndex [Type], [HeadingSeparator], [Replace]
Equivalent to the Insert Index dialog box. Inserts an INDEX field at the current selection.

Type is 0 (zero) for a normal index (default) or 1 for a run-in index. HeadingSeparator is 0
for none (default), 1 for a blank line, or 2 for a letter.

If Replace is 1, the existing index is overwritten. If Replace is omitted or 0, the existing index
is not overwritten.

InsertIndexEntry
Syntax: InsertIndexEntry [Entry$], [Range$], [Bold], [Italic]
Equivalent to the Insert Index Entry dialog box. Inserts an XE field at the current selection. If

Entry$ is omitted, the selection is the entry. The arguments correspond to check boxes.

InsertPageBreak
Syntax: InsertPageBreak
Inserts a page break at the current selection.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

InsertPageField
Syntax: InsertPageField
Inserts a PAGE field at the current selection.

InsertPageNumbers
Syntax: InsertPageNumbers [Type], [Position]
Dialog box equivalent; inserts a current PAGE field into the header or footer.

Type is 0 (zero) for header, 1 for footer. Position is 0 (left aligned), 1 (centered), or 2 (right
aligned).

InsertPara
Syntax: InsertPara
Inserts a paragraph mark at the current selection.

InsertPicture
Syntax: InsertPicture [Name$]
Equivalent to the Insert Picture dialog box. Inserts an IMPORT field at the current selection.

If Name$ is not supplied, a 1-inch graphic frame with a single border is inserted.

InsertTable
Syntax: InsertTable [NumColumns], [NumRows], [InitialColWidth[$]], [ConvertFrom]
Equivalent to the Insert Table dialog box. Choosing Format is recorded as an InsertTable

statement followed by a FormatTable statement.

InsertTableOfContents
Syntax: InsertTableOfContents [Source], [From], [To], [Replace]

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Equivalent to the Insert Table Of Contents dialog box. Inserts a TOC field at the current
selection.

Source is 0 (zero) for outline headings, or 1 for table entry fields. From and To refer to the
outline levels used.

If Replace is 1, the existing table of contents is overwritten. If Replace is omitted or 0 (zero),
the existing table of contents is not overwritten.

InsertTableToText
Syntax: InsertTableToText [ConvertTo]
Dialog box equivalent; converts the selected cells to normal text.

ConvertTo may be 0 (zero) for paragraphs, 1 for tab-delimited text, or 2 for comma-
delimited text.

InsertTimeField
Syntax: InsertTimeField
Inserts a TIME field at the current selection.

Instr()
Syntax: Num = Instr([Index], Source$, Search$)
Searches for Search$ in Source$. Returns the number of the character where Search$ started,

or 0 (zero) if Search$ is not found in Source$. If Index is supplied, the search starts at character
Index.

Int()
Syntax: Num = Int(n)
Returns the integer part of n.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

IsDirty()
Syntax: Log = IsDirty()
Returns -1 if the document has been changed (made dirty) since the last save, 0 (zero) if the

document has not been changed.

Italic
Syntax: Italic [On]
Without the argument, toggles italic for the entire selection. If On is nonzero, makes the

entire selection italic. If On is 0 (zero), removes italic from the entire selection.

Italic()
Syntax: Num = Italic()
Returns 0 (zero) if none of the selection is italic, 1 if all of the selection is italic, or -1 if part

of the selection is italic.

JustifyPara
Syntax: JustifyPara
Justifies the selected paragraphs.

JustifyPara()
Syntax: Num = JustifyPara()

Returns 0 (zero) if none of the selected paragraphs are justified, 1 if all of the selected
paragraphs are justified, or -1 if more than one kind of paragraph alignment is used.

Kill
Syntax: Kill Name$

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Deletes the file specified by Name$.

LCase$()
Syntax: A$ = LCase$(Source$)
Returns Source$ converted to lowercase.

Left$()
Syntax: A$ = Left$(Source$, n)
Returns the leftmost n characters of Source$.

LeftPara
Syntax: LeftPara
Left aligns the selected paragraphs.

LeftPara()
Syntax: Num = LeftPara()
Returns 0 (zero) if none of the selected paragraphs are left aligned, 1 if all of the selected

paragraphs are left aligned, or -1 if more than one kind of paragraph alignment is used.

Len()
Syntax: Num = Len(Source$)
Returns the number of characters in Source$.

Let
Syntax: [Let] Var = Expression
Assigns the value of an expression to a variable. Let is optional.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

LineDown
Syntax: LineDown [Repeat], [Select]
Moves the selection down by Repeat lines. If the Repeat argument is omitted, 1 is assumed. If

Select is nonzero, the selection is extended down by Repeat lines.

LineDown()
Syntax: Log = LineDown([Repeat], [Select])
Moves the selection down by Repeat lines. Returns 0 (zero) if the action cannot be

completed.

Line Input
Syntax: Line Input [#]StreamNumber, Variable$

Reads an entire line from the file specified by StreamNumber and puts the result in the
specified string variable. If a StreamNumber is not specified, you are prompted in the status bar.
Similar to the Input statement but LineInput doesn't break the line into separate values at
commas.

LineUp
Syntax: LineUp [Repeat], [Select]
Moves the selection up by Repeat lines. If the Repeat argument is omitted, 1 is assumed. If

Select is nonzero, the selection is extended up by Repeat lines. If Select is 0 (zero) or omitted,
the selection is not extended.

LineUp()
Syntax: Log = LineUp([Repeat], [Select])
Moves the selection up by Repeat lines. Returns 0 (zero) if the action cannot be completed.

For example, the function would return 0 if the insertion point is at the beginning of the
document.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

LockFields
Syntax: LockFields
Prevents the fields within the selection from being updated.

Lof()
Syntax: Num = Lof(StreamNumber)
Returns the length of the file, in bytes.

MacroAssignToKey
Syntax: MacroAssignToKey [Name$], [KeyCode], [Context]
Equivalent to the Macro Assign to Key dialog box. You can assign a macro to any key or key

combination.

Assigns the macro Name$ to the specified KeyCode. KeyCode is a number representing the
exact key. The number is not equivalent to the SendKeys syntax.

Context is 0 (zero) for global or 1 for document template.

Assign is the default action. The ResetAll command button name can be appended to return
the key assignments to the default state. The UnAssign command button name removes a macro
connection to a specific key.

Add this For this key
1024 Alt +
512 Shift +
256 Ctrl +

Key Code Produces
8 Backspace
9 Tab
12 5 on numeric keypad when NumLock is off
13 Enter

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

27 Esc
32 Space
33 PgUp
34 PgDn
35 End
36 Home
45 Ins
46 Del
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
96 0 on numeric keypad
97 1 on numeric keypad
98 2 on numeric keypad
99 3 on numeric keypad
100 4 on numeric keypad
101 5 on numeric keypad
102 6 on numeric keypad
103 7 on numeric keypad
104 8 on numeric keypad
105 9 on numeric keypad
106 * on numeric keypad
107 + on numeric keypad
108 ' on numeric keypad
109 — on numeric keypad
110 . on numeric keypad
111 / on numeric keypad
112 F1
113 F2
114 F3
115 F4
116 F5
117 F6
118 F7
119 F8
120 F9
121 F10

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

122 F11
123 F12
124 F13
125 F14
126 F15
127 F16

MacroAssignToMenu
Syntax: MacroAssignToMenu [Name$], [Menu$], [MenuText$], [Context]
Equivalent to the Macro Assign To Menu dialog box. Assigns the macro Name$ to the

specified Menu$ with MenuText$. Menu$ can be File, Edit, View, Insert, Format, Utilities,
Macro, or Window.

Context is 0 (zero) for global or 1 for document template.

Assign is the default action. You can append the ResetAll or UnAssign command button
name to return the menu assignments to the default state or remove a macro from a menu.

MacroEdit
Syntax: MacroEdit Name$, [Context], [Description$], [ShowAll], [NewName$]
Equivalent to the Macro Edit dialog box. Displays the Name$ macro for editing. Context is 0

(zero) for global (default) or 1 for document template. The Description$ refers to the text that
appears in the status bar if the macro is assigned to a menu.

The ShowAll argument lists all Word commands as well as the macros you have created.

If one of the command button names Rename, Delete, or Set is used and followed by another
action, multiple MacroEdit commands are recorded.

The NewName$ agrument specifies a new name for the macro; this argument is used with the
Rename command button.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

MacroName$()
Syntax: A$ = MacroName$(Count, [Context], [All])
Returns the name of the macro defined in the given context. Count may be in the range of 1

to CountMacros(Context). The name is taken from the list in the given context. MacroName$(0)
gives the name of the current macro window, if any. Context is 0 (zero) for global or 1 for
document template. If All is True, built-in commands are included.

MacroRecord
Syntax: MacroRecord [Name$], [Context], [Description$]
Equivalent to the File Record Macro and the Macro Record dialog boxes. Starts the macro

recorder. If Name$ is not given, the next default recording name (Macron) is used. Context is 0
(zero) for global (default) or 1 for document template. The Description$ refers to the text that
appears in the status bar if the macro is assigned to a menu.

MacroRun
Syntax: MacroRun Name$, [ShowAll]
Equivalent to the Macro Run dialog box. Runs the named macro or command. If ShowAll is

1, built-in commands are included.

MenuMode
Syntax: MenuMode
Activates menu mode. Equivalent to pressing Alt or F10.

Mid$()
Syntax: Num = Mid$(Source$, Index, [Count])
Returns Count characters from Source$, starting at character Index. If Count is not supplied,

the rest of the string is returned.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

MkDir
Syntax: MkDir Name$
Creates the directory specified by DirName$.

MoveText
Syntax: MoveText
Moves text. Equivalent to pressing F2.

MsgBox
Syntax: Message$, [Title$], [Type]
Creates a message box displaying Message$.
Title$ is the title of the message box. If it is not supplied, "Microsoft Word" is the title of the

message box. Type determines the symbol and buttons displayed in the box. It is the sum of the
values from the following groups:

Type argument Displays
Button:
0 OK button (default)
1 OK and Cancel buttons
2 Abort, Retry, Ignore buttons
3 Yes, No, Cancel buttons
4 Yes and No buttons
5 Retry and Cancel buttons

Icons:
0 No icon (default)
16 Hand icon
32 Question icon
48 Exclamation icon
64 Asterisk icon

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Button action:
0 First button is the default (default)
256 Second button is the default
512 Third button is the default

If Type is negative, then the message is displayed in the status bar and Type must be -1
(display the message permanently), -2 (display until a mouse or key event occurs), or -8 (use the
entire status bar width).

MsgBox()
Syntax: Num = MsgBox(Message$, [Title$], [Type])
Returns one of the following values:

Return value Button pressed Button text
—1 Leftmost button OK

Yes
Abort

0 Next button Cancel
No
Retry

1 Next button Cancel
Ignore

Name
Syntax: Name OldName$ As NewName$
Renames a file. If the new filename specified already exists, an error is generated.

NextCell
Syntax: NextCell
Moves the selection to the beginning of the next cell in a table.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

NextCell()
Syntax: Log = NextCell()
Moves to the next cell. Returns 0 (zero) if there is no next cell.

NextField
Syntax: NextField
Moves the selection to the next field result. Skips over marker fields, such as Index Entry

fields.

NextField()
Syntax: Log = NextField()
Moves to the next field. Returns 0 (zero) if there is no next field.

NextObject
Syntax: NextObject
Selects the next object in page view.

NextObject()
Syntax: Log = NextObject()
Moves to the next positioned object. Returns 0 (zero) if there is no next object.

NextPage
Syntax: NextPage
Moves the insertion point to the beginning of the next page in page view.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

NextPage()
Syntax: Log = NextPage()
Moves the insertion point to the beginning of the next page. Returns 0 (zero) if there is no

next page.

NextTab()
Syntax: Num = NextTab(Pos)
Returns the position of the next tab stop to the right of Pos. Pos is a number given in points.

If more than one paragraph is selected and the tabs do not all match, -1 is returned.

NextWindow
Syntax: NextWindow
Moves the selection to the next document window.

NormalStyle
Syntax: NormalStyle
Formats the selection in Normal paragraph format.

NormalStyle()
Syntax: Num = NormalStyle()
Returns 1 if all of the selection has the Normal style, 0 (zero) if none of the selection has the

Normal style, and -1 if part of the selection has the Normal style.

OK
Syntax: OK
Terminates a copy or move operation and performs its action.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

On Error
Syntax: On Error Goto Label
Syntax: On Error Resume Next
Syntax: On Error Goto 0
The On Error control structure allows the programmer to "trap" an error so that the program

can perform its own error handling. For more information on On Error, see Macros:
Introduction.

OnTime
Syntax: OnTime When$, Name$, [Tolerance]
Executes the macro specified by Name$ at the time specified by When$. When$ is a text

representation of the time for execution in a 24-hour format. When$ can also include a date
string that precedes the time string. If the date is not specified, the macro is run at the first
occurence of the specified time. The macro is executed the next time Word is idle after the
specified When$. Word does not run the macro if more than Tolerance seconds have elapsed
since When$, and the macro has not yet run. If Tolerance is 0 (zero), or not supplied, Word will
always run the macro, regardless of how long it is before Word is idle and can run the macro.

Open
Syntax: Open Name$ For Mode$ As [#]StreamNumber
Opens the file or device specified by Name$. The Name$ can be a device such as Com1 or

Lpt1, and must be enclosed in quotation marks. Do not include the colon following the device
name.

OpenUpPara
Syntax: OpenUpPara
Adds one line of space before the current paragraph.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

OtherPane
Syntax: OtherPane
Moves the selection to the other pane of the current window.

OutlineCollapse
Syntax: OutlineCollapse
Collapses the lowest level of subtext levels under the selected heading.

OutlineDemote
Syntax: OutlineDemote
Increases the heading level of the selection by one.

OutlineExpand
Syntax: OutlineExpand
Expands the lowest level of subtext under the selected heading.

OutlineLevel()
Syntax: Num = OutlineLevel()
Returns the heading level of the specified paragraph. Returns 0 (zero) if the specified

paragraph doesn't have a defined level (body text, for example).

OutlineMoveDown
Syntax: OutlineMoveDown
Moves the selection below the next visible heading.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

OutlineMoveUp
Syntax: OutlineMoveUp
Moves the selection above the next visible heading.

OutlinePromote
Syntax: OutlinePromote
Decreases the heading level of the selection by one.

OutlineShowFirstLine
Syntax: OutlineShowFirstLine [On]
If On is omitted, toggles the state. Changes the view of non-heading level text. If On is

nonzero, only first line of text is shown, if On is 0 (zero), all text is shown.

Overtype
Syntax: Overtype [On]
Without the argument, toggles overtyping mode. If On is nonzero, overtype mode is activated

and OVR is displayed in the status bar. If On is 0 (zero), overtype mode is deactivated.

Overtype()
Syntax: Log = Overtype()
Returns -1 if overtype mode is on, 0 (zero) if overtype mode is off.

PageDown
Syntax: PageDown [Repeat], [Select]
Moves the selection down by Repeat screens. If the Repeat argument is omitted, 1 is

assumed. If Select is nonzero, the selection is extended down by Repeat screens. Equivalent to
the PgDn key. If Select is 0 (zero) or omitted, the selection is not extended.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

PageDown()
Syntax: Log = PageDown([Repeat], [Select])
Moves the selection down by Repeat pages. Returns -1 if operation was successful, returns 0

(zero) if not.

PageUp
Syntax: PageUp [Repeat], [Select]
Moves the selection up by Repeat screens. If the Repeat argument is omitted, 1 is assumed. If

Select is nonzero, the selection is extended up by Repeat screens. Equivalent to the PgUp key. If
Select is 0 (zero) or omitted, the selection is not extended.

PageUp()
Syntax: Log = PageUp ([Repeat], [Select])
Moves the selection up by Repeat pages. Returns -1 if operation was successful, returns 0

(zero) if not.

ParaDown
Syntax: ParaDown [Repeat], [Select]
Moves the selection down by Repeat paragraphs. If Repeat is omitted, 1 is assumed. If Select

is nonzero, the selection is extended down by Repeat paragraphs.

ParaDown()
Syntax: Log = ParaDown([Repeat], [Select])
Moves the selection down by Repeat paragraphs. Returns 0 (zero) if the action cannot be

performed. For example, the function returns 0 if the insertion point is at the end of the
document.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ParaUp
Syntax: ParaUp [Repeat], [Select]
Moves the selection up by Repeat paragraphs. If Repeat is omitted, 1 is assumed. If Select is

nonzero, the selection is extended up by Repeat paragraphs.

ParaUp()
Syntax: Log = ParaUp([Repeat], [Select])
Moves the selection up by Repeat paragraphs. Returns 0 (zero) if the action cannot be

performed. For example, the function returns 0 if the insertion point is at the beginning of the
document.

PauseRecorder
Syntax: PauseRecorder
Stops macro recording until PauseRecorder is executed again.

PrevCell
Syntax: PrevCell
Moves the selection to the previous cell.

PrevCell()
Syntax: Log = PrevCell()
Moves selection to the previous cell. Returns 0 (zero) when the selection is in the first cell.

PrevField
Syntax: PrevField
Moves the selection to the previous field.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

PrevField()
Syntax: Log = PrevField()
Moves selection to the previous field. Returns 0 (zero) when the selection is in the first field.

PrevObject
Syntax: PrevObject
Selects the previous object in page view.

PrevObject()
Syntax: Log = PrevObject()
Selects the previous object. Returns 0 (zero) when the selection is at the first object or text

area.

PrevPage
Syntax: PrevPage
In page view, moves the insertion point to the beginning of the previous actual page.

PrevPage()
Syntax: Log = PrevPage()
Moves to the previous page. Returns 0 (zero) when the selection is at the first actual page.

PrevTab()
Syntax: Log = PrevTab(Pos)
Returns the position of the next tab to the left of Pos. Pos is a number given in points. If more

than one paragraph is selected and the tabs do not all match, -1 is returned.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

PrevWindow
Syntax: PrevWindow
Activates the previously active window.

Print
Syntax: Print [[#]StreamNumber], Expression
Writes Expression to the file specified by StreamNumber. With no StreamNumber specified,

output goes to the status bar.

Read
Syntax: Read [#]StreamNumber, Variable(s)
Similar to the Input statement, but removes quotation marks for strings. This statement is

used with the Write statement.

RecordNextCommand
Syntax: RecordNextCommand
Records the next command at the insertion point in the current macro window.

Rem
Syntax: Rem Remarks
Syntax: 'Remarks

Inserts explanatory text into the macro. You can use an apostrophe (') instead of a Rem
statement. If a Rem statement follows other statements on a line, it must be separated from those
statements by a colon (:). A colon is not required before a remark introduced by an apostrophe.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

RenameMenu
Syntax: RenameMenu MenuNumber, NewText$
Renames the top level menu of Menu Number to New Text$. MenuNumber represents the

name of a menu. NewText$ replaces the menu name. An ampersand (&) preceding a character
makes it the keyboard equivalent to selecting from the menu. For example, "&Programs"
becomes Programs when this statement is executed.

The MenuNumber argument values are:

MenuNumber Argument Menu
0 File
1 Edit
2 View
3 Insert
4 Format
5 Utilities
6 Macro
7 Window

Repeat
Syntax: Repeat
Repeats the last command.

RepeatSearch
Syntax: RepeatSearch
Repeats the most recent search.

ResetChar
Syntax: ResetChar
Removes manual character formatting from the selected text. Manual character formatting is

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

formatting that is not applied as a style. For example, you manually format a word or phrase in a
paragraph as bold text if the paragraph style is normal text. The text is left with the character
formatting of the current style.

ResetChar()
Syntax: Num = ResetChar()
Returns 1 if the selected text contains no manual character formatting. Returns 0 (zero) if any

manual character formatting is present.

ResetFootnoteContNotice
Syntax: ResetFootnoteContNotice
Resets the footnote continuation notice to the default value.

ResetFootnoteContSep
Syntax: ResetFootnoteContSep
Resets the footnote continuation separator to the default value.

ResetFootnoteSep
Syntax: ResetFootnoteSep
Resets the footnote separator to the default value.

ResetPara
Syntax: ResetPara
Removes manual paragraph formatting from the selected text. The text is left with the

paragraph formatting of the current style.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ResetPara()
Syntax: Num = ResetPara()
Returns 1 if the selected text contains no manual paragraph formatting. Returns 0 (zero) if

any manual paragraph formatting is present.

Right$()
Syntax: A$ = Right$(Source$, Count)
Returns the rightmost Count characters of Source$.

RightPara
Syntax: RightPara
Right aligns the selected paragraphs.

RightPara()
Syntax: Num = RightPara()
Returns 0 (zero) if none of the selected paragraphs are right aligned, 1 if all of the selected

paragraphs are right aligned, or -1 if more than one kind of paragraph alignment is used.

RmDir
Syntax: RmDir Name$
Removes the specified directory or subdirectory. Files must first be removed from the

subdirectory for this statement to work.

Rnd()
Syntax: Num = Rnd([Expression])
Returns a random fractional value between 0 (zero) and 1. The Expression is not used by

WordBASIC, but is provided for compatibility with other forms of BASIC.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

RulerMode
Syntax: RulerMode
Switches to ruler mode.

SaveTemplate
Syntax: SaveTemplate
Saves the document template.

Seek
Syntax: Seek [#]StreamNumber, Count
Positions file pointer at character Count in the file attached to stream StreamNumber.

Seek()
Syntax: Num = Seek([#]StreamNumber)
Returns the current file pointer for the specified StreamNumber.

Select Case
Syntax:

Case CaseExpression

Statement(s)

[Case Else

Statement(s)]

End Select
The expression is compared with all the values given in each CaseExpression until a match is

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

found. If a match is found, the statement(s) following the CaseExpression are executed. If there
is no match and there is a Case Else, those statement(s) are executed.

For more information on Select Case, see Macros: Introduction.

Selection$()
Syntax: A$ = Selection$()
Returns the plain, unformatted text of the selection. The maximum limit on the selection is

32,000 characters or until memory runs out. If the selection is too large, Selection$() is filled
with as much of the selection as will fit, and an error is generated. If the selection is an insertion
point, the character following the insertion point is returned.

SelectTable
Syntax: SelectTable
Selects the table containing the insertion point.

SelType
Syntax: SelType Type
Changes the selection highlighting to Type. Type refers to one of the following:

Type argument Type
0 Hidden
1 Insertion point
2 Selection
4 Dotted selection or insertion point (whatever is current)
5 Dotted insertion point
6 Dotted selection

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

SelType()
Syntax: Num = SelType()
Returns the type of the selection highlighting.

SendKeys
Syntax: SendKeys Keys$, [Wait]
Sends the keys specified to the active application, just as if they were typed at the keyboard.

If Word is not the active application and Wait is -1, Word waits for all keys to be processed
before proceeding.

Keys$ is represented by one or more characters, such as a for the character a, {Enter} for the
Enter key, and {33} for PgUp.

To specify characters that aren't displayed when you press the key, use the codes shown in
the following table.

Key Code
Backspace {backspace} or {bs} or {bksp}
Break {break}
CapsLock {capslock}
Clear {clear}
Del {delete} or {del}
Down {down}
End {end}
Enter {enter}
Esc {escape} or {esc}
Help {help}
Home {home}
Ins {insert}
Left {left}
NumLock {numlock}
PgDn {pgdn}
PgUp {pgup}

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

PrtSc {prtsc}
Right {right}
Tab {tab}
Up {up}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}

The plus sign (+), the percent sign (%), and the caret (^) have special meanings, described
below.

For example, %{enter} sends the code for Alt+Enter. The code +(eb) specifies EB.

To repeat a key sequence, use the syntax {key number}. For example, {pgdn 20} means
press the PgDn key 20 times. Remember to put a space between the key and the number.

SetDirty
Syntax: SetDirty [Dirty]
Makes Word recognize the current document as "dirty," or a changed document. If Dirty is

omitted or 1, the document is made dirty. If 0 (zero), it makes the document not dirty.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

SetEndOfBookmark
Syntax: SetEndOfBookmark Bookmark1$, [Bookmark2$]
Sets Bookmark2$ to the end point of Bookmark1$. If Bookmark2$ is not supplied,

Bookmark1$ is set to its own end.

SetGlossary
Syntax: SetGlossary Name$, Text$, [Context]
Defines a glossary entry called Name$ containing the text Text$. Context is 0 (zero) for

global, 1 for document template.

SetProfileString
Syntax: SetProfileString [App$], Key$, Value$
Sets a value in the current WIN.INI.

App$ is the name of the Microsoft Windows application. If the application is not specified,
the string Microsoft Word is used.

SetStartOfBookmark
Syntax: SetStartOfBookmark Bookmark1$, [Bookmark2$]
Sets Bookmark2$ to the starting point of Bookmark1$. If Bookmark2$ is not given,

Bookmark1$ is set to its own start.

Sgn()
Syntax: Num = Sgn(n)
Returns the sign of n. Returns 1 for a positive number, -1 for a negative number, or 0 for

zero.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Shell
Syntax: Shell App$, [WindowStyle]
Starts another program under Microsoft Windows. App$ uses the same format as the File

Run command in the Windows MS-DOS Executive, including any switches or arguments that
the program accepts. If App$ is the name of a file with an extension specific to an installed
application (.DOC for a Word document, for example), the statement starts the application and
loads that file.

WindowStyle Window type
0 Minimized window
1 Normal window
2 Minimized window (for Microsoft Excel compatibility)
3 Maximized window
4 Deactivated window

ShowAll
Syntax: ShowAll [On]
Without the argument, toggles ShowAll option of the View Preference command. If On is

nonzero, shows all invisible objects such as hidden text, tabs, spaces, paragraph marks, and so
on. If On is 0 (zero), turns off ShowAll option.

ShowAllHeadings
Syntax: ShowAllHeadings
Shows all text in outline view.

ShowHeading1
Syntax: ShowHeading1
Shows up to Level 1 headings and hides subordinate headings.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ShowHeading2
Syntax: ShowHeading2
Shows up to Level 2 headings and hides subordinate headings.

ShowHeading3
Syntax: ShowHeading3
Shows up to Level 3 headings and hides subordinate headings.

ShowHeading4
Syntax: ShowHeading4
Shows up to Level 4 headings and hides subordinate headings.

ShowHeading5
Syntax: ShowHeading5
Shows up to Level 5 headings and hides subordinate headings.

ShowHeading6
Syntax: ShowHeading6
Shows up to Level 6 headings and hides subordinate headings.

ShowHeading7
Syntax: ShowHeading7
Shows up to Level 7 headings and hides subordinate headings.

ShowHeading8
Syntax: ShowHeading8

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Shows up to Level 8 headings and hides subordinate headings.

ShowHeading9
Syntax: ShowHeading9
Shows up to Level 9 headings and hides subordinate headings.

ShowVars
Syntax: ShowVars
Displays the list of variables (and their values) currently in use. This statement is useful for

debugging macros.

ShrinkFont
Syntax: ShrinkFont
Decreases the size of the selected font. Can be used either on the selection or at the insertion

point.

ShrinkSelection
Syntax: ShrinkSelection
Shrinks the selection to the next smallest unit (word, sentence, paragraph, etc.).

SmallCaps
Syntax: SmallCaps [On]
Without the argument, toggles small caps for the entire selection. If On is nonzero, makes the

entire selection small caps. If On is 0 (zero), removes small caps from the entire selection.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

SmallCaps()
Syntax: Num = SmallCaps()
Returns 0 (zero) if none of the selection is small caps, 1 if all of the selection is small caps, or

-1 if part of the selection is small caps.

SpacePara1
Syntax: SpacePara1
Formats the selected paragraphs with single spacing.

SpacePara1()
Syntax: Num = SpacePara1()
Returns 0 (zero) if none of the selected paragraphs are single-spaced, 1 if all of the selected

paragraphs are single-spaced, or -1 if more than one kind of paragraph spacing is used.

SpacePara2
Syntax: SpacePara2
Formats the selected paragraphs with double spacing.

SpacePara2()
Syntax: Num = SpacePara2()
Returns 0 (zero) if none of the selected paragraphs are double-spaced, 1 if all of the selected

paragraphs are double-spaced, or -1 if more than one kind of paragraph spacing is used.

SpacePara15
Syntax: SpacePara15
Formats the selected paragraphs with one-and-one-half line spacing.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

SpacePara15()
Syntax: Num = SpacePara15()
Returns 0 (zero) if none of the selected paragraphs are one-and-one-half spaced, 1 if all of the

selected paragraphs are one-and-one-half spaced, or -1 if more than one kind of paragraph
spacing is used.

Spike
Syntax: Spike
Deletes the selection after copying it to the special glossary called the Spike.

StartOfColumn
Syntax: StartOfColumn [Select]
Moves insertion point to topmost position in the currently selected table column. If Select is

nonzero, extends the selection.

StartOfDocument
Syntax: StartOfDocument [Select]
Moves the selection to the beginning of the document. If Select is nonzero, extends the

selection.

StartOfLine
Syntax: StartOfLine [Select]
Moves the selection to the beginning of the line. If Select is nonzero, extends the selection.

StartOfRow
Syntax: StartOfRow [Select]
Moves insertion point to the leftmost position in the currently selected table row. If Select is

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

nonzero, extends the selection.

StartOfWindow
Syntax: StartOfWindow [Select]
Moves the insertion point to the top left corner of the window. If Select is nonzero, extends

the selection.

Stop
Syntax:
Stops a running macro and displays a message that the macro was interrupted.

Str$()
Syntax: A$ = Str$(n)
Returns the string representation of value n. Positive numbers have a leading space character.

String$()
Syntax: A$ = String$(Count, Source$)
Returns the first character in Source$ repeated Count times. Replacing Source$ with the

number m representing the ASCII value of Source$ returns the character with ANSI code m
repeated Count times.

StyleName$()
Syntax: A$ = StyleName$([Count], [Context], [All])
Returns the name of the style defined in the given context (global or document template).

Count may be in the range from 1 to CountStyles(Context). If Count is 0 (zero), the name of the
current style is returned; otherwise, the name is taken from the list in the given context. Context
is 0 for global, 1 for document template.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Sub...End Sub
Syntax:

Statement(s)

End Sub
Defines a subroutine. For more information on subroutines, see Macros: Introduction.

SubScript
Syntax: SubScript [On]
Without the argument, toggles subscript for the entire selection. If On is nonzero, makes the

entire selection subscript. If On is 0 (zero), removes subscript from the entire selection.

SubScript()
Syntax: Num = SubScript()
Returns 0 (zero) if none of the selection is subscript, 1 if all of the selection is subscript, or -1

if part of the selection is subscript or superscript.

SuperScript
Syntax: SuperScript [On]
Without the argument, toggles superscript for the entire selection. If On is nonzero, makes

the entire selection superscript. If On is 0 (zero), removes superscript from the entire selection.

SuperScript()
Syntax: Num = SuperScript()
Returns 0 (zero) if none of the selection is superscript, 1 if all of the selection is superscript,

or -1 if part of the selection is superscript or subscript.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

TabLeader$()
Syntax: A$ = TabLeader$(Pos)
Returns the leader character of the tab at Pos points. If more than one paragraph is selected

and all the tabs don't match, an empty string is returned.

The leader characters returned are blank space, period, hyphen, and underscore.

TabType()
Syntax: Num = TabType(Pos)
Returns the type of tab at the given position Pos. If more than one paragraph is selected and

all the tabs don't match, -1 is returned. If the tabs match, the type is returned as follows:

If function returns Tab type is
0 Left-aligned
1 Centered
2 Right-aligned
3 Decimal

Time$()
Syntax: A$ = Time$()
Returns the current time in the default format.

ToggleFieldDisplay
Syntax: ToggleFieldDisplay
Toggles the display between field codes and field results.

UCase$()
Syntax: A$ = UCase$(A$)
Returns A$ converted to uppercase.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Underline
Syntax: Underline [On]
Without the argument, toggles underlining for the entire selection. If On is nonzero, makes

the entire selection underlined. If On is 0 (zero), removes underlining from the entire selection.

Underline()
Syntax: Num = Underline()
Returns 0 (zero) if none of the selection is underlined, 1 if all of the selection is underlined,

or -1 if part of the selection is underlined or more than one kind of underlining is used.

UnHang
Syntax: UnHang
Reduces the amount of indent in a hanging indent.

UnIndent
Syntax: UnIndent
Removes the indent from the selected paragraphs. The first paragraph is aligned with the

previous tab stop.

UnLinkFields
Syntax: UnLinkFields
Converts the selected fields to plain text and uses the last result.

UnLockFields
Syntax: UnLockFields
Unlocks fields in the current selection for updating.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

UnSpike
Syntax: UnSpike
Empties the Spike glossary and inserts all contents into the document at the selection.

UpdateFields
Syntax: UpdateFields
Updates the fields in the selection.

UpdateSource
Syntax: UpdateSource
Sends changes in linked Word documents back to their source.

UtilCalculate
Syntax: UtilCalculate
Equivalent to the Calculate command on the Utilities menu. The selection is evaluated as a

mathematical expression. The result of the evaluation is placed on the Clipboard.

UtilCalculate()
Syntax: Num = UtilCalculate([Expression$])
Evaluates Expression. With the argument, this function is equivalent to the = field. Values in

Expression can be table cell references. For more information on the = field, see the full
Technical Reference. Without an expression, performs the same operation as the UtilCalculate
statement, but returns the result rather than placing it on the Clipboard.

UtilCompareVersions
Syntax: UtilCompareVersions Name$
Equivalent to the Utilities Compare Versions dialog box. Compares the current document

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

with the document specified by Name$.

UtilCustomize
Syntax: UtilCustomize [AutoSave], [Units], [Pagination], [SummaryPrompt],
[ReplaceSelection], [Name$], [Initials$], [ButtonFieldClicks]
Equivalent to the Utilities Customize dialog box. Some arguments take measurements in

points or numbers. Other arguments correspond to check boxes.

UtilGetSpelling
Syntax: UtilGetSpelling FillArray$(), [Word$], [MainDic$], [SuppDic$]
Fills the string array FillArray$ with all available spellings for a word. If Word$ is supplied,

that word is used. If it is not supplied, Word uses the word closest to the insertion point. The
spellings for each definition are appended in the order they appear in the spelling checker.

Sub MAIN
Dim S$(10)
UtilGetSpelling S$(), "color"
For x = 1 To 10

MsgBox S$(x)
Next x
End Sub

UtilGetSpelling()
Syntax: Log = UtilGetSpelling(FillArray$(), [Word$], [MainDic$], [SuppDic$])
Fills the string array FillArray$ with all available spellings of a word. If Word$ is supplied,

that word is used. If it is not supplied, Word uses the word closest to the insertion point. The
spellings for each definition are appended in the order they appear in the spelling checker.
Returns 0 (zero) if the word is spelled correctly.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

UtilGetSynonyms
Syntax: UtilGetSynonyms FillArray$(), [Word$]
Fills the string array FillArray$ with all available synonyms for Word$. If Word$ is not

supplied, the word nearest the selection is used.

UtilGetSynonyms()
Syntax: Log = UtilGetSynonyms(FillArray$(), [Word$])
Fills the string array FillArray$ with all available synonyms for Word$. If Word$ is not

supplied, the word nearest the selection is used. Returns 0 (zero) if there are no synonyms
available and returns -1 if one or more synonyms are available.

UtilHyphenate
Syntax: UtilHyphenate [HyphenateCaps], [Confirm], [HotZone[$]]
Equivalent to the Utilities Hyphenate dialog box. The arguments correspond to check boxes.

UtilRenumber
Syntax: UtilRenumber [NumParas], [Type], [StartAt], [ShowAllLevels], [Format$]
Equivalent to the Utilities Renumber dialog box. The arguments correspond to check boxes.

UtilRepaginateNow
Syntax: UtilRepaginateNow
Equivalent to the Repaginate Now command on the Utilities menu. Forces repagination of

the entire document.

UtilRevisionMarks
Syntax: UtilRevisionMarks [MarkRevisions], [RevisionBars], [NewText]
Equivalent to the Utilities Revision Marks dialog box. The arguments correspond to check

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

boxes.

The Search (for next text with revision marking) Accept Revisions or Undo Revisions
command button name can be appended.

UtilSort
Syntax: UtilSort [Order], [Type], [Separator], [FieldNum[$]], [SortColumn],
[CaseSensitive]
Equivalent to the Utilities Sort dialog box.

UtilSpelling
Syntax: UtilSpelling [Word$], [MainDic$], [SuppDic$], [IgnoreCaps], [AlwaysSuggest]
Equivalent to the Utilities Spelling dialog box. The arguments correspond to check boxes.

The Delete command button name can be appended to remove the word from the current
supplemental dictionary.

UtilSpellSelection
Syntax: UtilSpellSelection
Checks the selection. If the selection is only part of a word, the selection is expanded to

include the whole word. The default supplemental dictionary is used.

UtilThesaurus
Syntax: UtilThesaurus
Lists alternative words for the selection. Equivalent to the Thesaurus command on the

Utilities menu.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Val()
Syntax: Num = Val(A$)
Returns the numeric value of A$.

ViewAnnotations
Syntax: ViewAnnotations [On]
Turns on the annotations pane if On is nonzero, turns off the annotations pane is On is 0

(zero). Without the argument, toggles the annotations pane on and off.

ViewAnnotations()
Syntax: Log = ViewAnnotations()
Returns -1 if annotations view mode is on, 0 (zero) if annotations view mode is off.

ViewDraft
Syntax: ViewDraft [On]
Turns on draft view mode if On is nonzero, turns off draft view mode if On is 0 (zero).

Without the argument, toggles draft view mode. If no window is open, the first window opened
is opened in draft view.

ViewDraft()
Syntax: Log = ViewDraft()
Returns -1 if draft view mode is on, 0 (zero) if draft view mode is off.

ViewFieldCodes
Syntax: ViewFieldCodes [On]
Turns on field codes view mode if On is nonzero, turns off field codes view mode if On is 0

(zero). Without the argument, toggles field codes view mode. If no window is open, the first

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

window opened shows field codes.

ViewFieldCodes()
Syntax: Log = ViewFieldCodes()
Returns -1 if field codes view mode is on, 0 (zero) if field codes view mode is off.

ViewFootnotes
Syntax: ViewFootnotes [On]
Turns on footnotes view mode if On is nonzero, turns off footnotes view mode if On is 0

(zero). Without the argument, toggles footnotes view mode. If no window is open, the first
window opened is opened in footnotes view.

ViewFootnotes()
Syntax: Log = ViewFootnotes()
Returns -1 if footnotes view mode is on, 0 (zero) if footnotes view mode is off.

ViewFullMenus
Syntax: ViewFullMenus
Turns on full menus.

ViewMenus()
Syntax: Num = ViewMenus()
Returns the menu state as follows:

Return value Menu state
0 Normal short menus
1 Normal full menus
2 No document short menus

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

3 No document full menus

ViewOutline
Syntax: ViewOutline [On]
Turns on outline view mode if On is nonzero, turns off outline view mode if On is 0 (zero).

Without the argument, toggles outline view mode. If no window is open, the first window
opened is opened in outline view.

ViewOutline()
Syntax: Log = ViewOutline()
Returns -1 if outline view mode is on, 0 (zero) if outline view mode is off.

ViewPage
Syntax: ViewPage [On]
Turns on page view mode if On is nonzero, turns off page view mode if On is 0 (zero).

Without the argument, toggles page view mode. If no window is open, the first window opened
is opened in page view.

ViewPage()
Syntax: Log = ViewPage()
Returns -1 if page view mode is on, 0 (zero) if page view mode is off.

ViewPreferences
Syntax: ViewPreferences [Tabs], [Spaces], [Paras], [Hyphens], [Hidden], [ShowAll],
[DisplayAsPrinted], [Pictures], [TextBoundaries], [HScroll], [VScroll], [TableGridlines],
[StyleAreaWidth[$]]
Equivalent to the View Preferences dialog box.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ViewRibbon
Syntax: ViewRibbon [On]
Turns on the ribbon if On is nonzero, turns off the ribbon if On is 0 (zero). Without the

argument, toggles the ribbon. If no window is open, the first window opened is opened with the
ribbon.

ViewRibbon()
Syntax: Log = ViewRibbon()
Returns -1 if the ribbon is on, 0 (zero) if the ribbon is off.

ViewRuler
Syntax: ViewRuler [On]
Turns on the ruler if On is nonzero, turns off the ruler if On is 0 (zero). Without the

argument, toggles the ruler. If no window is open, the first window opened is opened with the
ruler.

ViewRuler()
Syntax: Log = ViewRuler()
Returns -1 if the ruler is on, 0 (zero) if the ruler is off.

ViewShortMenus
Syntax: ViewShortMenus [On]
Turns on short menus if On is nonzero, turns off short menus if On is 0 (zero). Without the

argument, toggles short menus. If no window is open, the first window opened is opened in short
menus.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

ViewStatusBar
Syntax: ViewStatusBar [On]
Turns on the status bar if On is nonzero, turns off the status bar if On is 0 (zero). Without the

argument, toggles the status bar.

ViewStatusBar()
Syntax: Log = ViewStatusBar()
Returns -1 if the status bar is on, 0 (zero) if the status bar is off.

VLine
Syntax: VLine [Count]
Scrolls down vertically by Count lines. If Count is not specified, one line is the default. A

negative Count scrolls up.

VPage
Syntax: VPage [Count]
Scrolls down vertically by Count screens. If Count is not specified, one screen is the default.

A negative Count scrolls up.

VScroll
Syntax: VScroll Percentage
Scrolls vertically the specified percentage of the document length.

VScroll()
Syntax: Num = VScroll()
Returns the current vertical scroll position as a percentage of the document's size.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

While...Wend
Syntax:

Statement(s)
Wend

Repeats the statements in the block while the Condition is True. If the Condition is initially
False, the loop is never executed.

Window()
Syntax: Num = Window()
Returns the number of the currently selected window. The number ranges from 1 to the

number of open windows. The number corresponds to the number on the Window menu.

Window1
Syntax: Window1
Selects Window 1. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window2
Syntax: Window2
Selects Window 2. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window3
Syntax: Window3
Selects Window 3. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Window4
Syntax: Window4
Selects Window 4. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window5
Syntax: Window5
Selects Window 5. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window6
Syntax: Window6
Selects Window 6. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window7
Syntax: Window7
Selects Window 7. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window8
Syntax: Window8
Selects Window 8. This number corresponds to the number on the Window menu. If you

select a nonexistent window, an error is generated.

Window9
Syntax: Window9

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Selects Window 9. This number corresponds to the number on the Window menu. If you
select a nonexistent window, an error is generated.

WindowArrangeAll
Syntax: WindowArrangeAll
Arranges all open windows so that windows do not overlap.

WindowName$()
Syntax: A$ = WindowName$(n)
Returns the title of the nth open window. The n corresponds to the number on the Window

menu. If n is 0 (zero) or not supplied, the name of the current window is returned.

WindowNewWindow
Syntax: WindowNewWindow
Equivalent to the New Window command on the Window menu. Creates a copy of the

current window.

WindowPane()
Syntax: Num = WindowPane()
If the window isn't split or if the top pane of the current window is selected, returns 1. If the

bottom pane is selected, returns 3.

WordLeft
Syntax: WordLeft [Repeat], [Select]
Moves the insertion point left by Repeat words, extending the selection if Select is nonzero.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

WordLeft()
Syntax: Log = WordLeft([Repeat], [Select])
Moves the selection left by Repeat words. Returns 0 (zero) if the action cannot be performed.

For example, the function returns 0 if the insertion point is at the beginning of the document.

WordRight
Syntax: WordRight [Repeat], [Select]
Moves the insertion point right by Repeat words, selecting if Select is nonzero.

WordRight()
Syntax: Log = WordRight([Repeat], [Select])
Moves the selection right by Repeat words. Returns 0 (zero) if the action cannot be

performed.

WordUnderline
Syntax: WordUnderline [On]
Without the argument, toggles word-only underlining for the entire selection. If On is

nonzero, makes the entire selection word-only underlining. If On is 0 (zero), removes word-only
underlining from the entire selection.

WordUnderline()
Syntax: Log = WordUnderline()
Returns 0 (zero) if none of the selection is word underlined; 1 if all of the selection is word

underlined; or -1 if part of the selection is word underlined or more than one kind of underlining
is used.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Write
Syntax: Write [#]StreamNumber, Expressions
Writes the arguments to StreamNumber including delimiters so they can be read by the Read

statement.

Dialog Control Definition Statements
You can create your own dialog boxes and customized menus with Word macros. The

control statements used in dialog box construction are described in this section. For more
information on dialog box construction, see the full Technical Reference.

In the syntax lines, the following arguments are used:

Argument Meaning
x Horizontal position of the item in 1/8 system font character

width units
y Vertical position of the item in 1/12 system font character

width units
dx Width of the item in 1/4 system font character width units
dy Height of the item in 1/8 system font character width units

Begin Dialog
Syntax: Begin Dialog UserDialog [x, y,] dx, dy
Starts the dialog box declaration. The dx and dy arguments are the width and height of the

dialog box (relative to the given x and y coordinates). If x and y are not supplied, then the dialog
box is positioned automatically by Word at the point where dialog boxes usually appear on the
screen.

CheckBox
Syntax: CheckBox x, y, dx, dy, Text$, .Field

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

Creates a check box. When the dialog box is used .Field contains the current setting: if the
value is 0, the box is not checked; any other value means the box is checked. The result is a
numeric field with the value 0 (zero) (not checked) or 1 (checked) or -1 (grayed) in the dialog
record returned from Dialog.

ComboBox
Syntax: ComboBox x, y, dx, dy, Array_Variable$, .Field
Creates an expanded combo box with the list box filled from the Array_Variable$. When the

dialog box is used, .field contains the current setting, your selected string, returned from Dialog.

Dialog
Syntax: Dialog DialogRecord
Displays the dialog box specified by DialogRecord, for editing. After editing, you can store

edits in DialogRecord by choosing OK or lose edits by choosing Cancel. Choosing Cancel
produces a run-time error that you can trap with On Error.

End Dialog
Syntax: End Dialog
Ends the definition of the dialog box.

GroupBox
Syntax: GroupBox x, y, dx, dy, Text$
Creates a box with a title. A GroupBox does not have a result.

ListBox
Syntax: ListBox x, y, dx, dy, Array_Variable$, .Field
Creates a list box control filled with the strings in Array_Variable$. When the dialog box is

used, .Field contains the current setting, the index of your selected choice, returned from Dialog.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

OKButton and CancelButton
Syntax: OKButton x, y, dx, dy
Syntax: CancelButton x, y, dx, dy

If you choose the OK button, the macro continues. If you choose the Cancel button, an error
is generated. This error can be trapped with On Error. For more information on On Error, see
Macros: Introduction.

OptionGroup and OptionButton
Syntax: OptionGroup .Field
Syntax: OptionButton x, y, dx, dy, Text$

OptionGroup begins the definition of a series of related option buttons. Within the group only
one button may be active (on) at a time. The .Field argument is set to a value between 0 (zero)
and n, which represents the value of the currently active button.

Text
Syntax: Text x, y, dx, dy, Text$
Creates a box of static text. Text does not have a result. Text statement must precede the

dialog box control it is associated with.

TextBox
Syntax: TextBox x, y, dx, dy, .Field

Creates an edit control.

Microsoft and the Microsoft logo are registered trademarks and Windows is a
trademark of Microsoft Corporation.

1089 Part No. 03915
Kit No. 059-050-007

	Macros: Introduction
	A macro is a set of instructions that you can create for Microsoft Word to follow. You can use a macro to combine a series of actions into one step. Whenever you frequently repeat the same steps in Word, it's likely that creating a macro to perform the task can save you some time and effort.
	You can use macros to configure and customize Word for many situations. You can add and delete menu items, move them around, and assign commands to key combinations. In some cases you may want to write special applications with Word. Using fields, macros, and templates you can create a document processing system that meets your specific needs.
	The examples in this chapter highlight the programming possibilities available with Word. Although these examples are simple, they show some of the basics with which you can create your own programs with Word.
	Writing a Macro
	There are two ways to write a macro. You can create a macro by "recording" keystrokes you make. You can also write your macro by using the statements and functions of WordBASIC, the Word macro language. For more information on specific statements and functions, see Macros: Reference.
	Using Macro Record to Write a Macro
	When you record a macro, you turn on the recorder and Word records all the actions you take until you turn off the recorder.
	The macro recorder is useful even if you don't want to record an entire macro. Recording all or part of a macro and then editing it is often faster than typing it from scratch, and you don't have to look up the syntax for every function and statement you want to use. You can also use the PauseRecorder and RecordNextCommand commands to help construct a macro. For more information on these statements, see Macros: Reference.

	Using Macro Edit to Write a Macro
	You can use the Macro Edit command to write your macro directly and then save it.

	Macro Editing Icon Bar
	The macro editing icon bar includes a number of functions that can help you debug your macro programs. Press Alt+Shift+the underlined letter to choose an icon. The icons are described as follows:
	Start/Continue:
	Runs the active macro; changes from Start to Continue after a stop (such as after a Step).
	Step:
	Runs a single macro instruction and then stops. If the instruction is a subroutine, Word runs each instruction in that subroutine as a single step.
	Step SUBs:
	Runs a single macro instruction and then stops. If the instruction is a subroutine, Word runs that subroutine in its entirety as a single step.
	Trace:
	Runs the active macro, highlighting each instruction as it is carried out.
	Vars:
	Displays the variables the macro uses.
	Global/Template (name):
	This text shows you the context (global or template) of the active macro. If the context is template, the template name is displayed.
	(Name):
	Displays the name of the active macro

	Running a Macro
	Note: Because an untested macro can create errors or alter your file, always make backup copies of your files before you test a new macro.

	A Sample Macro
	The following procedures create a macro that automatically sets formatting properties for a document:
	To stop recording actions, choose Macro Stop Recorder (Alt,M,C). "REC" disappears from the status bar.
	If you made any mistakes when recording the macro, messages will appear on the screen.
	You can add the macro to the Macro menu for easier access. To add the PageSetup macro to the Macro menu:
	You can use the Macro Edit command to look at the command list created when you record a macro. To look at the PageSetup macro:

	Macro Programming Concepts
	This section describes in more detail some of the features of WordBASIC, Word's macro language.
	The WordBASIC Language
	WordBASIC macros exist on three "layers," much like the three file levels DOS uses. If you are an experienced DOS user, you know that DOS executes files in this order: filename.exe, filename.com, and filename.bat. You can therefore have three files with the same file name-but with different extensions-and DOS runs them according to this convention.
	WordBASIC's three layers are the template layer, the global layer, and the command menu layer. These layers are described in the following table:
	Layer Description
	Template Includes only those macros based on the specified template
	Global Includes macros you create that are available to all documents
	Built-in command Includes the commands on all the default Word menus and assigned to default key combinations

	When you run a macro, Word searches for it in the following order: template layer, then global layer, then the built-in command layer. So, if you create a macro with the same name as a built-in macro, your version will be executed instead of the original version. If Word cannot find a macro, a message to that effect is displayed.
	Remember the order of macro execution when naming macros. If you have a macro at the template layer and a macro at the global layer with the same name and you want the global macro executed, you must either rename one of the macros or precede the macro with the Super prefix statement. The Super prefix forces Word to ignore the current layer and start searching the next layer. For example, the following macro, called FormatDocument, disables mirror margins when the Format Document command is chosen:
	Sub MAIN
	Dim dlgrec As FormatDocument
	GetCurValues dlgrec
	Again:
	Dialog dlgrec
	If dlgrec.MirrorMargins = 1 Then
	Beep
	MsgBox "Mirror Margins have been disabled by this macro"
	dlgrec.MirrorMargins = 0
	Goto Again
	End If
	Super FormatDocument dlgrec
	End Sub

	Auto Macros
	Word reserves special names for macros you can create to alter aspects of Word's behavior. These are called "auto macros." Word recognizes a macro whose name begins with "Auto" as a macro that runs automatically when the situation it applies to arises. You supply the actual steps for the auto macro.
	You can prevent an auto macro from running by holding down the Shift key when you perform the action that triggers the macro.
	AutoNew:
	The AutoNew macro runs after you create a new document based on the current template.
	AutoOpen:
	The AutoOpen macro runs after you open a file with File Open, File Find, or the list of documents at the bottom of the File menu.
	AutoExec:
	The AutoExec macro runs when you start Word. This macro makes it easy to instruct Word to automatically make adjustments when you start it. You can prevent AutoExec from running by typing the /m switch when you start Word (winword /m).
	AutoClose:
	The AutoClose macro runs when you close a document (File Close, Document Control Close, File Exit, or closing Windows).
	AutoExit:
	The AutoExit macro runs when you quit Word.

	WordBASIC Statements and Functions
	WordBASIC includes both statements and functions. A statement performs an action, such as italicizing text. A function produces, or "returns," a number or a set of characters that represent information. Functions appear in the text with parentheses () following them.
	WordBASIC includes three types of statements and functions: utility statements and functions, BASIC statements and functions, and dialog control definition statements. These statements and functions are described in more detail in Macros: Reference. The following table briefly describes each type:
	Utility statements and functions
	Miscellaneous statements and functions that allow you to get information needed by a macro. Includes dialog box equivalents, which are equivalent to Word commands that produce a dialog box. For example, the WordBASIC statement UtilRenumber is equivalent to choosing the Utilities Renumber command and displaying the resulting dialog box.
	BASIC statements and functions
	Statements and functions taken directly from the Microsoft QuickBASIC language.
	Dialog control definition statements
	Statements that create customized dialog boxes. For example, the GroupBox statement creates a box with a title grouping several options together in a dialog box.
	WordBASIC is a subset of the BASIC programming language, similar to Microsoft QuickBASIC. One difference between WordBASIC and prior forms of BASIC is that the main program must be located inside a subroutine called MAIN. Sub MAIN is always the first line of a WordBASIC macro; End Sub is always the last line (see "Subs," later in this chapter). Nothing is allowed outside this subroutine except global variable declarations, such as Dim and Declare, and the other Sub and Function definitions. The following example shows a small program in both BASIC and WordBASIC:
	BASIC WordBASIC
	Print "Hello!" Sub MAIN
	End Print "Hello!"
	End Sub

	The result of the first program in BASIC displays "Hello!" on the screen. In WordBASIC, "Hello!" appears in the status bar at the bottom of the screen.
	In WordBASIC you can use a colon (:) to separate two statements or functions on the same line. You can use a backslash () at the end of a line of code to indicate that the code continues on the next line.

	Data Types
	WordBASIC supports two basic data types: strings and numbers. Word uses double-precision, floating-point numbers. Strings can contain up to 32,000 characters, depending on the amount of memory available. The following are examples of these data types.
	String Number
	Text$ = "this is a string of characters" Sales = 270
	Print Text$ Print Sales

	Variables are usually local to the subroutine or function in which they are used. If your macro consists of several subroutines or functions and you want to make a variable globally available to subroutines and functions within the macro, declare them with a Dim statement located outside the Sub MAIN. If you want to permanently store variables, store them in a file or glossary.
	String variables must have a trailing dollar sign; for example, Name$. Numeric variable names require no special character. Unlike standard BASIC, WordBASIC does not support integer variables. Word does support multidimensional arrays of strings or values. Array variables are declared with the Dim statement and can be redimensioned with the Redim statement.
	The Dim statement declares a variable's type and allocates storage space for the variable. If Shared is used, then the variable is global; if not, the variable is local to the Sub or Function. If the variable is global, the Dim statement must be located outside the Sub or Function. If the variable is local, the Dim statement must be located inside the Sub or Function. Dim can also be used to declare global scalar (nonarray) variables.
	Arrays allow you to assign multiple values to a single variable. The macro can then determine which value to access, as shown in the following example:
	Program listing Effect
	Sub MAIN
	Dim MonthSales(12) Dimensions a one-dimensional array to hold 12 values
	For Month = 1 To 12 Sets up a loop for the macro to cycle through 12 times
	Input "Please enter the sales for 	Ask the user for input; the value input is assigned to the
	this month", MonthSales(Month)	array element called MonthSales(Month); Month will vary from 1 to 12 as the loop progresses
	Next Month Increments Month by 1; returns to the For statement; when
	the value reaches 12, the macro continues to the next line
	End Sub

	Using the array form shortens the program. Without an array, each month would have to be entered as an individual variable.
	If a macro uses dialog boxes or commands that use dialog boxes, a third data type is available, the dialog record. A dialog record consists of a list of "fields." Each field in a dialog record contains the value of an element in the dialog box; the value is a number in some cases and a string in others. Some dialog record fields can accept either a number or a string; in these cases, Word converts a string such as "1 in" to the equivalent number of printer's points. This feature is only available for some dialog record fields. These fields are followed by a dollar sign enclosed in brackets ([$]) in the macro statement syntax in this chapter. This is a convention used for your information only. Do not include the [$] when you are writing dialog records in macros. You can set or read a specific field of a dialog record by specifying the field name, preceded by a period (.).
	In the above syntax Dim allocates to DialogRecord the storage space and associated field types for DialogBox.
	To copy the current elements of a dialog box to a dialog record, use the GetCurValues statement (see Macros: Reference for more information on the GetCurValues statement).
	The Dialog statement can be used to display a dialog box with the values taken from the specified dialog record (see Macros: Reference for more information on the Dialog statement).
	Program listing Effect
	Sub MAIN
	Dim dlg As FormatDocument Creates a dialog record with empty fields
	GetCurValues dlg Places the current values of the Format Document command into the record
	If dlg.MirrorMargins = 0 Then Toggles the mirror margins field of the record
	dlg.MirrorMargins = 1
	Else dlg.MirrorMargins = 0
	Dialog dlg Displays the dialog box
	FormatDocument dlg Performs the action using the values specified in the dialog record
	End Sub

	Expressions
	Word can evaluate complex numeric and string expressions. In WordBASIC, all relational expressions return -1 if True and 0 (zero) if False. If strings are used with relational operators, the strings are first converted to ASCII values, and the resulting values are used in the comparison. For example, in the expression If "Apple"<"Orange" Then Print "Apple is less than Orange." Word converts the relational expression into a value that represents True or False. The If statement accepts the value and then performs the operation accordingly.
	Bitwise operators (Not, And, Or) convert numbers to 16-bit integers and then process the individual bits of the number in binary format.
	Hint: Not of -1 is False. Not of any other number, including 0 (zero), is True. Therefore, be careful when using bitwise operators with non-Boolean functions.
	All expressions are evaluated such that multiplication and division are performed before addition and subtraction. To perform operations in a different order, use parentheses, as shown in the second example that follows:
	Equation Effect
	14 * 5 - 6 Multiplies 14 by 5, then subtracts 6 from the result
	14 * (5 - 6) Subtracts 6 from 5, then multiplies 14 by the result

	Control Structures
	The following control structures can be used to program Word macros. Their actions are similar to those used in Microsoft QuickBASIC.
	For...Next

	Syntax: For CounterVariable = Start To End [Step Increment]
	Statement(s)
	Next [CounterVariable]
	Executes the statements between For and Next as many times as it takes the CounterVariable to go from the Start value to the End value. The Increment is the value to increment the counter (usually 1).
	For names the CounterVariable and specifies the Start and End values in the range of the CounterVariable. These values can be expressed as constants, as variables derived before the start of the loop, or as expressions that compute a range of values for the CounterVariable.
	The Increment can be a positive or a negative number; positive numbers increase the count, negative numbers decrease the count. If Increment is omitted, the default is 1. An example follows:
	Goto
	Branches unconditionally to an optional label or line number. The syntax for labels and line numbers follows:
	If...ElseIf...Else...End If
	Performs conditional execution or branching, depending on the expressions. The conditions in an If...ElseIf...Else...End If block can be any numeric expressions in WordBASIC.
	WordBASIC evaluates the conditions in the order in which they appear and executes the statements corresponding to the first condition resulting in a True (nonzero) value.
	If tests for a specified condition. If the condition exists, the operations following the Then statement are executed. Else is performed if none of the If or ElseIf conditions evaluate to True. Else is optional; if it is not included and all previous conditions are False, Word takes no action.
	To build conditional expressions, use the relational operators (=, <>, <, >, >=, <=) and the Boolean operators (And, Or, Not).
	On Error
	Normally, when WordBASIC encounters an error in a program, a message explaining the error is displayed and the program is terminated. The On Error control structure allows the programmer to "trap" an error so that the program can perform its own error handling. The first form of the control structure, On Error Goto, causes the program to branch to the specified label whenever an error occurs. At the end of the error handling, it is necessary to reset the variable Err to 0 for further errors to be trapped.
	The second form of the control structure, On Error Resume Next, causes all errors to be ignored.
	The third form of the control structure, On Error Goto 0, disables the error trapping. Once an error has been trapped, the special variable Err contains the code for the error that occurred. For more information on error codes, see the full Technical Reference.
	Be careful when using error trapping. The statement causing the error may have performed some, but not all, of its action, thereby causing other statements that rely on that action to fail.
	Select Case
	This control structure is similar to a multi-line If statement in that a statement or group of statements is executed based on the result of some expression. With Select Case, however, only one expression is evaluated, even though there may be several groups of statements.
	The Expression is evaluated and the result is compared with the CaseExpression. A CaseExpression is preceded by the keyword Case and may be followed by a single value, a list of values separated by commas, a range of values separated by the keyword To, or a relation started with the keyword Is, followed by a relational operator (=, <>, <, >, <=, or >=) and an expression.
	Select Case Int(Rnd() * 10) - 5
	Case 1,3
	Print "one or three"
	Case Is > 3
	Print "Greater than three"
	Case -5 to 0
	Print "Between -5 and 0 (inclusive)"
	Case Else
	Print "Must be 2"
	End Select

	Stop
	Stops a running macro and displays a message that the macro was interrupted.
	While...Wend
	Repeats the statements in the block while the Condition is True. If the Condition is initially False, the loop is never executed.
	A While...Wend loop uses a conditional expression to determine the number of times the Statement(s) are executed. WordBASIC evaluates the Condition each time the Statement(s) are executed. As long as the Condition evaluates as True, the Statement(s) are executed. When the Condition evaluates as False, the Statement(s) are no longer executed.
	A conditional statement is any numeric expression. To build conditional expressions, use the relational operators (=, <>, <, >, >=, <=) and the Boolean operators (And, Or, Not). The evaluation results are -1 for True and 0 for False.
	Sub MAIN
	Count = 0
	StartOfDocument
	EditSearch "macro"
	While EditSearchFound()
	Count = Count + 1
	EditSearch "macro"
	Wend
	Print "macro was found ";Count; " times"
	End Sub

	Subs
	A "subroutine" is a group of statements that performs a task. In WordBASIC, a macro begins with a Sub MAIN statement and ends with an End Sub statement. Every macro in Word must be set up as a subroutine with these statements. You cannot nest subroutines; that is, a subroutine cannot be located within another subroutine. The syntax follows:
	The simplest macros consist of only one subroutine. As macros get more complicated, they are usually written in smaller, separate units. If your macro performs the same action in different parts of the program, you can write another subroutine. Suppose you want the computer to beep before each message is displayed. One way to do this is shown in the following listing:
	Sub MAIN
	BeepMsg "Are you sure you want to quit?", 0
	BeepMsg "Don't you want to save your work first?", 0
	BeepMsg "This is your last chance. Choose OK to quit.", 65
	End Sub
	Sub BeepMsg (msg$, type)
	Beep
	MsgBox msg$,, type
	End Sub

	User-Defined Functions
	You can define new functions in a manner similar to subroutines. Instead of using the keyword Sub, you use the Function keyword. The syntax follows:
	Defines a function. The ParameterList is a list of variables, separated by commas, for receiving arguments to the function. Functions without parameters should not have parentheses. The statements are used to produce a value that the function returns when called. An example follows:
	The Rnd() function returns a fractional value between 0 and 1. Sometimes it is useful to generate an integral random number between 0 and some specific value; the preceding example does this. The Function RndInt(n) line tells Word that a new function is being defined and that it takes a single numeric parameter called n. The second line indicates that the value of the function is the formula Int(Rnd()*n).
	Every user-defined function includes an implied variable with the same name as the function. Assigning a value to that variable defines the value that is to be returned from the function. A function can contain more statements above and/or below the assignment, just as if it were a subroutine.
	A user-defined function returns a numeric value unless the name is terminated with a dollar sign ($), which indicates that the function returns a string.

	File Input-Output
	WordBASIC supports the standard BASIC stream input-output (I/O) statements and functions. However, record-based file I/O is not supported.
	You can have up to four files open at one time. Each file is assigned a number from 1 to 4. This identifies the file to Word's macro processor. The # symbol indicates that the expression following it is a file number. For example, Open "RBOW.TXT" For Input As #1 opens the specified file for input and assigns the file number 1 to it. When accessed with other file statements, the number 1 indicates which of the open files to use.
	The following macro searches in a text file for a given string (case sensitive):
	Sub MAIN
	Rem Sets up a dialog record
	Dim dlgrec As FileOpen
	Rem Fills the dialog record with the defaults
	GetCurValues dlgrec
	dlgrec.Name = "*.TXT"
	Rem Allows the user to change the values
	Dialog dlgrec
	Search$ = InputBox$("Search for what string?")
	Rem Connects the specific file to stream 1
	Open dlgrec.Name For Input As #1
	Print "Searching"
	Rem While not at the end of file 1 Reads one line of the file into Text$
	Rem and exits from the search loop otherwise loops again
	While Not (Eof(1))
	Line Input #1, Text$
	If Instr(Text$, Search$) Then
	MsgBox Search$ + " was found in file: " + dlgrec.Name
	Goto Found
	End If
	Wend
	Beep
	Rem Beeps at end of file
	MsgBox Search$ + " was not found in file: " + dlgrec.Name
	Found:
	Rem Closes the file
	Close
	End Sub

	Special Bookmarks
	Some statements can use the following special bookmarks:
	Bookmark Definition
	Sel Current selection
	PrevSel1 Previous selection 1 where editing occurred (nil at start)
	PrevSel2 Previous selection 2 where editing occurred (nil at start)
	StartOfSel Start of selection
	EndOfSel End of selection
	Line Current line (first of selection)
	Char Current character (first of selection)
	Para Current paragraph (first of selection)
	Section Current section (first of selection)
	Doc Entire document
	Page Current page
	StartOfDoc Beginning of document
	EndOfDoc End of document
	Cell Cell
	Table Table
	HeadingLevel A heading level

	Macros: Reference
	This chapter is a reference for constructing macros. It contains the syntax and a description of each of the functions and statements in WordBASIC. These statements and functions are divided into the following sections:
	Introduction
	The WordBASIC language consists of statements and functions described in the following sections. A statement performs an action; Bold 1, for example, makes the selection bold. A function produces, or "returns," a number or string of characters that represents information. Most functions do not perform any action, but some do. Those that do perform an action usually return a value indicating the success or failure of that action. A function is always followed by parentheses. For example, Overtype 1 is a statement; Overtype() is a function. If a function ends with $, it returns a string of characters. For example, the StyleName$() function returns a string of characters representing the style name of the selection.
	For Boolean operators, if a function returns 0 (zero), False is implied. Any other value implies True. If a function can only be True or False, -1 is returned for True.
	All statements that insert text are affected by the state of the Typing Replaces Selection option of the Utilities Customize command. If this option is turned on, inserted text overwrites selected text.
	Measurements for statements should be entered in points (1/72 inch).
	Macro programs have access to system information such as free memory and software version numbers. Be aware, however, that free memory changes constantly. Values returned may be only an approximation of free memory.
	Statements can take arguments. In this chapter, a dollar sign ($) follows arguments that accept a string of characters. Some arguments take a value or a string. The string can be Auto, in the case of certain measurements, or a string such as 1 in, 2 cm, and so on. Word converts these measurements to points. In this chapter, these arguments are followed by a dollar sign in brackets ([$]). This is a convention adopted for your information only; do not use the dollar sign when you supply the arguments for actual macros.

	Dialog Box Equivalents
	Some statements are dialog box equivalents. That is, each of the statement arguments is equivalent to an option in the dialog box for a corresponding command on the command menu. The following conventions are used:
	You can set up the arguments to dialog box equivalent statements in two ways: you can use the positional form by listing the argument values after the statement keyword, separated by commas; or you can use the keyword form by following the statement keyword with the argument name, preceded by a period and followed by an equal sign (=), which is in turn followed by the argument value. An example of each method follows:
	The order in which argument values are specified is important when using the positional form, so this form is most useful for statements with relatively few arguments. When using the keyword form, you need to include only those arguments that you want to change from the default, so this form is best if you want to avoid looking up or memorizing the syntax for statements with numerous arguments. You can use both forms for one statement, but arguments specified in the keyword form must follow arguments specified in the positional form.
	Command buttons carry out actions. Command button equivalents are not arguments in the traditional sense and are not included in statement syntax. They are discussed in the text following the syntax line. Command button equivalents can be specified only with the keyword form and must be appended to the argument list. You can specify only one command button per statement.

	Utility Statements and Functions
	Abs()

	Syntax: Num = Abs(n)
	Returns the unsigned value of n.
	Activate

	Syntax: Activate WindowText$, [PaneNum]
	Activates the window whose title bar is specified by WindowText$. If PaneNum is supplied, a value of 1 or 2 activates the top pane and a value of 3 or 4 activates the bottom pane.
	AppActivate

	Syntax: AppActivate WindowText$, [Immediate]
	Activates the application whose title bar is specified by WindowText$. If Immediate is 1, Word immediately switches the focus to the other application. If Immediate is 0 (zero), and Word does not have the focus,Word flashes its title bar, waits for the user to give the focus to Word, and then activates the application.
	AppInfo$()

	Syntax: A$ = AppInfo$(TypeOfInfo)
	Returns information about the state of Word.
	If TypeOfInfo is Result is
	1 The environment string; for example, “Windows 2.11”
	2 The version number of Word; for example, “1.00”
	3 Word is in a special mode; for example, CopyText or MoveText mode
	4 X position of the Word window, measured from the left of the screen in points
	5 Y position of the Word window, measured from the top of the screen in points
	6 Width of the current document workspace in points
	7 Height of the current document workspace in points
	8 Returns —1 if the application is maximized
	9 Amount of total conventional memory
	10 Amount of total conventional memory available
	11 Amount of total expanded memory
	12 Amount of total expanded memory available
	13 Returns —1 if a math coprocessor is installed
	14 Returns —1 if a mouse is present
	15 Amount of disk space available

	Values are returned as strings. Use Val(AppInfo$(n)) to convert the string to a number, if appropriate.
	AppMaximize

	Syntax: AppMaximize
	Zooms the Word window to full screen size.
	AppMaximize()

	Syntax: Log = AppMaximize()
	Returns a nonzero value if the window is maximized.
	AppMinimize

	Syntax: AppMinimize
	Minimizes the Word window to an icon.
	AppMinimize()

	Syntax: Log = AppMinimize()
	Returns a nonzero value if the window is minimized.
	AppMove

	Syntax: AppMove XPos, YPos
	Moves the Word window to XPos, YPos relative to the top left of the screen. Values are in points.
	AppRestore

	Syntax: AppRestore
	Restores the Word window from a maximized/minimized state.
	AppSize

	Syntax: AppSize XPos, YPos
	Resizes the Word window. Values are in points.
	Asc()

	Syntax: Num = Asc(A$)
	Returns the ANSI character code of the first character in A$.
	Beep

	Syntax: Beep [Beeptype]
	Causes the computer's speaker to beep. Beeptype is 1, 2, 3, or 4. If Beeptype is omitted, it is assumed to be 1. The exact tone produced will depend on your hardware configuration. A typical use of Beep is to signal the end of a macro.
	Bold

	Syntax: Bold [On]
	Without the argument, toggles bold for the entire selection. If On is nonzero, makes the entire selection bold. If On is 0 (zero), removes bold from the entire selection.
	Bold()

	Syntax: Num = Bold()
	Returns 0 (zero) if none of the selection is bold, 1 if all of the selection is bold, or -1 if part of the selection is bold.
	BookmarkName$()

	Syntax: A$ = BookmarkName$(Count)
	Returns the name of the bookmark. Count must be in the range from 1 to CountBookmarks().
	Call

	Syntax: [Call] Subname [ParameterList]
	Transfers control to a subroutine.
	Cancel

	Syntax: Cancel
	Terminates a mode such as ColumnSelect and does not perform the action. See "OK," later in this section.
	CenterPara

	Syntax: CenterPara
	Centers the currently selected paragraph(s).
	CenterPara()

	Syntax: Num = CenterPara()
	Returns 0 (zero) if none of the selected paragraphs are centered, 1 if all of the selected paragraphs are centered, or -1 if more than one kind of paragraph alignment is used.
	ChangeCase

	Syntax: ChangeCase [Type]
	Without an argument, alternates the case of the current selection between all lowercase, all caps, and initial caps based on the first two characters of the selection. If Type is 0 (zero), sets the text to all lowercase. If Type is 1, sets the text to all caps. If Type is 2, sets the text to initial caps.
	ChangeRulerMode

	Syntax: ChangeRulerMode
	Cycles the ruler between Paragraph, Table, and Document modes.
	CharColor

	Syntax: CharColor Color
	Sets the character color of the selection to Color. The color may be one of the following:
	Color argument Description
	0 Auto (color specified by the Control Panel setting)
	1 Black
	2 Blue
	3 Cyan
	4 Green
	5 Magenta
	6 Red
	7 Yellow
	8 White

	CharColor()

	Syntax: Num = CharColor()
	Returns the numbers set by the CharColor statement, or -1 if all the selected text is not the same color. See CharColor.
	CharLeft

	Syntax: CharLeft [Repeat], [Select]
	Moves the selection left by Repeat characters. If the repeat argument is omitted, 1 is assumed. If Select is nonzero, the selection is extended to the left or right by Repeat characters.
	CharLeft()

	Syntax: Log = CharLeft([Repeat], [Select])
	Moves the selection left by Repeat characters. Returns 0 (zero) if the action cannot be performed.
	CharRight

	Syntax: CharRight [Repeat], [Select]
	Moves the selection right by Repeat characters. If the Repeat argument is omitted,
	1 is assumed. If Select is nonzero, the selection is extended to the right by Repeat characters. If Select is 0 (zero) or omitted, the selection is not extended.
	CharRight()

	Syntax: Log = CharRight([Repeat], [Select])
	Moves the selection right by Repeat characters. Returns 0 (zero) if the action cannot be performed.
	ChDir

	Syntax: ChDir Name$
	Changes directories to the one specified by Name$.
	Chr$()

	Syntax: A$ = Chr$(AnsiCode)
	Returns the character whose ANSI code is AnsiCode.
	Close

	Syntax: Close [[#]StreamNumber]
	Closes the file attached to StreamNumber. If StreamNumber is not supplied, all open files are closed.
	ClosePane

	Syntax: ClosePane
	Closes the current window pane. You use this statement to close a pane in a split document, a header/footer pane, a footnote pane, etc. This does not close a document window, only a pane in a window.
	CloseUpPara

	Syntax: CloseUpPara
	Makes the space before and after the selected paragraph 0 (zero).
	CmpBookmarks()

	Syntax: Num = CmpBookmarks(Bookmark1$, Bookmark2$)
	Compares two named bookmarks and returns one of the following values:
	Return value Meaning
	0 Bookmark1$ and Bookmark2$ are equivalent
	1 Bookmark1$ is entirely below Bookmark2$
	2 Bookmark1$ is entirely above Bookmark2$
	3 Bookmark1$ is below and inside Bookmark2$
	4 Bookmark1$ is inside and above Bookmark2$
	5 Bookmark1$ encloses Bookmark2$
	6 Bookmark2$ encloses Bookmark1$
	7 Bookmark1$ and Bookmark2$ begin at the same point, but Bookmark1$ is longer
	8 Bookmark1$ and Bookmark2$ begin at the same point, but Bookmark2$ is longer
	9 Bookmark1$ and Bookmark2$ end at the same place, but Bookmark1$ is longer
	10 Bookmark1$ and Bookmark2$ end at the same place, but Bookmark2$ is longer
	11 Bookmark1$ is below and adjacent to Bookmark2$
	12 Bookmark1$ is above and adjacent to Bookmark2$
	13 One or more of the bookmarks does not exist

	ColumnSelect

	Syntax: ColumnSelect
	Starts the column selection mode. Cancel ends this mode.
	ControlRun

	Syntax: ControlRun Application
	Equivalent to the Control Run dialog box. Runs an application from the Word Control menu.
	Statement Effect
	ControlRun 0 Runs Clipboard
	ControlRun 1 Runs Control Panel

	CopyBookmark

	Syntax: CopyBookmark Bookmark1$, Bookmark2$
	Sets Bookmark2$ equal to Bookmark1$.
	CopyFormat

	Syntax: CopyFormat
	Copies the formatting of the selected text.
	CopyText

	Syntax: CopyText
	Copies text. Equivalent to the copy to key (Shift+F2).
	CountBookmarks()

	Syntax: Num = CountBookmarks()
	Returns the number of bookmarks you have defined in the document.
	CountFiles()

	Syntax: Num = CountFiles()
	Returns the number of names in the file list on the File menu.
	CountFonts()

	Syntax: Num = CountFonts()
	Returns the number of fonts available with the printer you've selected.
	CountGlossaries()

	Syntax: Num = CountGlossaries([Context])
	Returns the number of glossaries defined in the given context. Context can be 0 (zero) for global or 1 for document template. The default is global.
	CountMacros()

	Syntax: Num = CountMacros([Context], [All])
	Returns the number of programs defined in the given context. Context can be 0 (zero) for global or 1 for document template. The default is global.
	If All is nonzero, built-in macros are included.
	CountStyles()

	Syntax: Num = CountStyles([Context], [All])
	Returns the number of styles defined in the given context. Context can be 0 (zero) for the document or 1 for document template. The default is document.
	If All is nonzero, built-in styles are included.
	CountWindows()

	Syntax: Num = CountWindows()
	Returns the number of windows in the list on the Window menu.
	Date$()

	Syntax: A$ = Date$()
	Returns today's date.
	DDEExecute

	Syntax: DDEExecute ChanNum, ExecuteString$
	Sends an execute message over the channel ChanNum with an ExecuteString$, which is defined by the receiving application. Use the format described under SendKeys to send specific key sequences.
	The channel number must have been opened by the DDEInitiate() function.
	If the channel is not valid or if the receiving application refuses to execute the instructions, an error is generated.
	DDEInitiate()

	Syntax: ChanNum = DDEInitiate(App$, Topic$)
	Opens a DDE channel to an application. App$ is the application name defined by the other application. Topic$ describes something in the application you are accessing, usually the document containing the data you wish to use.
	If DDEInitiate() is successful, it returns the number of the open channel. All subsequent DDE macro functions use this number to specify the channel. This function returns 0 (zero) if it fails to open a channel.
	DDEPoke

	Syntax: DDEPoke ChanNum, Item$, Data$
	Sends the data to the item specified by Item$ in the application connected to channel ChanNum. ChanNum must have been opened by the DDEInitiate() function. If DDEPoke is unsuccessful, an error is generated.
	DDERequest$()

	Syntax: A$ = DDERequest$(ChanNum, Item$)
	Requests the information specified by Item$ over the DDE channel specified by ChanNum. ChanNum must have been opened by the DDEInitiate() function. If DDERequest$() is unsuccessful, a null string ("") is returned.
	DDERequest$() returns the data in CF_TEXT format. Pictures or text in Rich Text Format cannot be transferred.
	DDETerminate

	Syntax: DDETerminate ChanNum
	Closes the channel ChanNum. The channel must have been opened with the DDEInitiate() function.
	DDETerminateAll

	Syntax: DDETerminateAll
	Similar to DDETerminate, but closes all open channels.
	Declare

	Syntax: Declare Sub SubName Lib LibName [ParameterList] [Alias ModuleName]
	Syntax: Declare Function FunctionName Lib LibName [ParameterList] [Alias ModuleName]
	Declares an external library function as a subroutine or function inside a macro.
	DeleteBackWord

	Syntax: DeleteBackWord
	Deletes the word immediately preceding the selection but does not place it on the Clipboard.
	DeleteWord

	Syntax: DeleteWord
	Deletes the word immediately following the selection but does not place it on the Clipboard.
	Dim

	Syntax: Dim [Shared] Var [(Size)] [, Var [(Size)]...]
	Declares a variable's type and allocates storage space for the variable. For more information on the Dim statement, see Macros: Introduction.
	DisableInput

	Syntax: DisableInput [Disable]
	Prevents the Esc key from interrupting a macro. The Esc key is enabled by setting Disable to 0 (zero).
	Statement Effect
	DisableInput 0 Disable inactive
	DisableInput 1 Disable active (default)

	DocClose

	Syntax: DocClose [Save]
	Closes the current window or pane. If Save is 1, Word saves the document if it has been edited (considered "dirty") since the last save; if Save is 2, Word does not save the document, but closes the window or pane. If Save is 0 or omitted, Word prompts the user to save the document if it has been edited.
	DocMaximize

	Syntax: DocMaximize
	Zooms the document window to application window size. If it is already maximized, the screen is displayed in the restored state.
	DocMaximize()

	Syntax: Log = DocMaximize()
	Returns -1 if the window is maximized.
	DocMove

	Syntax: DocMove XPos, YPos
	Moves the document window to XPos, YPos relative to the top-left corner of the document area. Values are in points.
	DocRestore

	Syntax: DocRestore
	Restores the Word window from a maximized state.
	DocSize

	Syntax: DocSize Width, Height
	Sizes the document window to Width, Height. Values are in points.
	DocSplit

	Syntax: DocSplit Percentage
	Splits the current window at the given percentage height.
	DocSplit()

	Syntax: Num = DocSplit()
	Returns the current window split position as a percentage of the window height, or 0 (zero) if the window isn't split.
	DoFieldClick

	Syntax: DoFieldClick
	Simulates a mouse button double-click within the GOTOBUTTON and MACROBUTTON fields' prompt. See the full Technical Reference for information on these fields.
	DoubleUnderline

	Syntax: DoubleUnderline [On]
	Without the argument, toggles double underlining for the entire selection. If On is 1, Word makes the entire selection double underlined. If On is 0 (zero), Word removes double underlining from the entire selection.
	DoubleUnderline()

	Syntax: Num = DoubleUnderline()
	Returns 0 (zero) if none of the selection is double underlined, 1 if all of the selection is double underlined, or -1 if part of the selection is double underlined or more than one kind of underlining is used.
	EditClear

	Syntax: EditClear [Count]
	Deletes the selection without changing the contents of the Clipboard. If the selection is an insertion point, deletes the character to the right of the insertion point. If Count is supplied, deletes the specified number of characters from the right of the insertion point.
	If Count is a negative number, deletes to the left of the insertion point.
	EditCopy

	Syntax: EditCopy
	Equivalent to the Copy command on the Edit menu. Copies the selection to the Clipboard.
	EditCut

	Syntax: EditCut
	Equivalent to the Cut command on the Edit menu. The selection is placed on the Clipboard and then deleted.
	EditGlossary

	Syntax: EditGlossary Name$, [Context]
	Equivalent to the Edit Glossary dialog box. Used to define, delete, and insert glossary entries. Context can be 0 (zero) for global or 1 for document template. The default is global.
	The default action is Insert. You can perform other actions by appending the command button name from the dialog box (Define or Delete) to the statement.
	EditGoTo

	Syntax: EditGoTo Destination$
	Equivalent to the Edit Go To dialog box. Destination$ is a bookmark name, a page number or goto string. See the special bookmarks in the preceding section and Moving the Insertion Point in the User's Reference for more information on bookmarks.
	EditHeaderFooter

	Syntax: EditHeaderFooter [Type], [StartingNum[$]], [NumFormat], [HeaderDistance[$]], [FooterDistance[$]], [FirstPage], [OddAndEvenPages]
	Equivalent to the Edit Header/Footer dialog box. Opens the header or footer pane for editing.
	The arguments correspond to a check box. If the argument is 1, the check box is on. If the argument is 0 (zero), the check box is off.
	EditHeaderFooterLink

	Syntax: EditHeaderFooterLink
	Links the header/footer with a previous section. This is not possible in the first section of a document.
	EditPaste

	Syntax: EditPaste
	Equivalent to the Paste command on the Edit menu. Copies the contents of the Clipboard to the insertion point.
	EditPasteLink

	Syntax: EditPasteLink [AutoUpdate]
	Equivalent to the Edit Paste Link dialog box. Pastes a DDE (Dynamic Data Exchange) field. If AutoUpdate is 1, EditPasteLink pastes a DDEAUTO field.
	For information on DDE, see the full Technical Reference.
	EditReplace

	Syntax: EditReplace [Search$], [Replace$], [WholeWord], [MatchCase], [Confirm], [Format]
	Equivalent to the Edit Replace dialog box. Replaces the Search$ string with Replace$. If Search$ and Replace$ are not supplied, the strings used in the previous search and/or replace are used.
	To replace formatting in addition to, or instead of, text, use EditReplaceChar, EditReplacePara, EditSearchChar, or EditSearchPara first to set up the formatting, then run EditReplace or EditSearch with Format set to 1.
	EditReplaceChar
	Syntax: EditReplaceChar [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps], [Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]
	Dialog box equivalent; defines the character formatting EditReplace uses to format replacement text. See "FormatCharacter" later in this section.
	EditReplacePara

	Syntax: EditReplacePara [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]], [Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext], [Border], [Pattern], [PageBreak], [NoLineNum]
	Dialog box equivalent; defines the paragraph formatting EditReplace uses to format replacement text. The arguments specify options available in the Format Paragraph dialog box. See "FormatParagraph," later in this section.
	EditSearch

	Syntax: EditSearch [Search$], [WholeWord], [MatchCase], [Direction], [Format]
	Equivalent to the Edit Search dialog box. Searches for the specified Search$.
	The arguments correspond to a check box. If the argument is 1, the check box is on. If the argument is 0 (zero), the check box is off.
	EditSearchChar

	Syntax: EditSearchChar [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps], [Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]
	Dialog box equivalent; defines the character formatting EditSearch and EditReplace use to find formatted text. See "FormatCharacter," later in this section.
	EditSearchFound()

	Syntax: Log = EditSearchFound()
	Returns -1 if the last EditSearch was successful. Returns 0 (zero) if not.
	Sub MAIN
	Count = 0
	StartOfDocument
	EditSearch "macro"
	While EditSearchFound()
	Count = Count + 1
	EditSearch "macro"
	Wend
	Print "macro was found ";Count; " times"
	End Sub

	EditSearchPara

	Syntax: EditSearchPara [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]], [Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext], [Border], [Pattern], [PageBreak], [NoLineNum]
	Dialog box equivalent; defines the paragraph formatting EditSearch and EditReplace use to find formatted text. The arguments specify options available in the Format Paragraph dialog box. See "Format Paragraph," later in this section.
	EditSelectAll

	Syntax: EditSelectAll
	Selects the entire document.
	EditSummaryInfo

	Syntax: EditSummaryInfo [Title$], [Subject$], [Author$], [Keywords$], [Comments$], [Directory$], [Template$], [CreateDate$], [LastSavedDate$], [LastSavedBy$], [RevisionNumber], [EditTime$], [LastPrintedDate$], [NumPages], [NumWords], [NumChars], [FileName$]
	Equivalent to the Edit Summary Info dialog box. Sets the summary information and allows access to the Statistics dialog box. All the options in the Statistics dialog box are read-only except for the total editing time, which can be set with WordBASIC.
	You can append the Update command button name to update the summary information.
	EditTable

	Syntax: EditTable [Modify], [ShiftCells]
	Equivalent to the Edit Table dialog box. Modify is 0 (zero) for Row, 1 for Column, or 2 for Selection. ShiftCells is 0 for Horizontally or 1 for Vertically. You can delete, merge, or split cells by appending the Delete, MergeCells, or SplitCells command button name.
	EditUndo

	Syntax: EditUndo
	Equivalent to the Undo command on the Edit menu. Undoes the last action, if possible. You can undo certain Word actions, such as Cut and Paste. Some actions can't be undone.
	EmptyBookmark()

	Syntax: Log = EmptyBookmark(Name$)
	Returns -1 if Name$ is empty (an insertion point), or 0 (zero) if Name$ is not empty.
	EndOfColumn

	Syntax: EndOfColumn [Select]
	Moves the insertion point to the bottom cell in the table column. If Select is a nonzero value, the selection is extended.
	EndOfDocument

	Syntax: EndOfDocument [Select]
	Moves the selection to the end of the document. If Select is a nonzero value, the selection is extended.
	EndOfLine

	Syntax: EndOfLine [Select]
	Moves the selection to the end of the line. If Select is a nonzero value, the selection is extended.
	EndOfRow

	Syntax: EndOfRow [Select]
	Moves the selection to the end of the last cell in the table row. If Select is a nonzero value, the selection is extended.
	EndOfWindow

	Syntax: EndOfWindow [Select]
	Moves the selection to the end of the window. If Select is a nonzero value, the selection is extended.
	Eof()

	Syntax: Log = Eof(StreamNumber)
	Returns -1 when the end of the file attached to the stream number has been reached.
	Err

	Syntax: Err
	This is a special variable that contains the error code for the most recent error condition.
	Error

	Syntax: Error ErrorNumber
	Displays a message corresponding to an error situation. ErrorNumber is an error code.
	ExistingBookmark()

	Syntax: ExistingBookmark(Bookmark$)
	Returns -1 if Bookmark$ exists, or 0 (zero) if not.
	ExpandGlossary

	Syntax: ExpandGlossary
	Expands the word closest to the insertion point into the corresponding glossary text.
	ExtendSelection

	Syntax: ExtendSelection [Character$]
	Turns on extend mode, if it is not already turned on. If extend mode is already turned on, selection is extended to next unit; for example, if a character is selected, ExtendSelection extends the selection to the whole word. If Character$ is specified, the selection is extended to that character.
	File1

	Syntax: File1
	Equivalent to selecting the first listed file on the File menu. Opens the first file. An error is generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if only three files are listed under the File menu.
	File2

	Syntax: File2
	Equivalent to selecting the second listed file on the File menu. Opens the second file. An error is generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if only three files are listed under the File menu.
	File3

	Syntax: File3
	Equivalent to selecting the third listed file on the File menu. Opens the third file. An error is generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if only three files are listed under the File menu.
	File4

	Syntax: File4
	Equivalent to selecting the fourth listed file on the File menu. Opens the fourth file. An error is generated if you attempt to open a nonexistent file slot. For example, you cannot use File4 if only three files are listed under the File menu.
	FileClose

	Syntax: FileClose [Save]
	Equivalent to the Close command on the File menu. Closes the current file and associated windows. The Save argument determines whether a save is forced: 1 forces a save, 2 forces no save, 0 prompts the user to save edited documents.
	FileExit

	Syntax: FileExit [Save]
	Equivalent to the Exit command on the File menu. Quits Word. If any open documents have been edited and Save is omitted or is 0 (zero), you are prompted to save each changed document. If Save is 1, all edited documents are automatically saved before exiting. If Save is 2, the documents are not saved.
	FileFind

	Syntax: FileFind [SortBy], [SearchList$], [Title$], [Subject$], [Author$], [Keywords$], [SavedBy$], [Text$], [DateCreatedFrom$], [DateCreatedTo$], [DateSavedFrom$], [DateSavedTo$], [MatchCase], [SearchAgain]
	Equivalent to the File Find dialog box. It can be used to change the search criteria in subsequent FileFind statements. If you record a macro with FileFind, any other actions you perform in the File Find dialog box at that time, such as opening or deleting a document, editing summary information, or printing, are also recorded.
	FileName$()

	Syntax: A$ = FileName$(n)
	Returns the nth file in the file list. If n is 0 (zero), the name of the current file is returned. If n is greater than the number of files in the file cache, an error is generated. If there is no current document, FileName$(0) returns an empty string.
	FileNew

	Syntax: FileNew [NewTemplate], [Template$]
	Equivalent to the File New dialog box.
	FileOpen

	Syntax: FileOpen Name$, [ReadOnly]
	Equivalent to the File Open dialog box. Opens the named document. An error is generated if the document does not exist. If ReadOnly is 1, the document is opened as read-only.
	FilePrint

	Syntax: FilePrint [Type], [NumCopies], [Range], [From$], [To$], [Reverse], [Draft], [UpdateFields], [PaperFeed], [Summary], [Annotations], [ShowHidden], [ShowCodes], [FileName$]
	Equivalent to the File Print dialog box.
	FilePrinterSetup

	Syntax: FilePrinterSetup [Printer$]
	Equivalent to the File Printer Setup dialog box. Printer$ is the name of the new printer to be activated. Enter this argument exactly as it appears in the File Printer Setup dialog box.
	The Setup command button name can be appended to display the dialog box showing the printer options.
	FilePrintMerge

	Syntax: FilePrintMerge [From], [To]
	Equivalent to the File Print Merge dialog box. If From or To is nonzero, Word merges the specified records only.
	The New Document command button name can be appended to direct the output to a new document.
	FilePrintPreview

	Syntax: FilePrintPreview [On]
	Equivalent to the Print Preview command on the File menu. Without On, toggles print preview mode. If On is nonzero, turns on print preview mode; if On is 0 (zero), turns off print preview mode.
	FilePrintPreviewBoundaries

	Syntax: FilePrintPreviewBoundaries [On]
	Displays the text boundaries if On is nonzero; turns off display if On is 0 (zero). If On is omitted, toggles the display of text boundaries.
	FilePrintPreviewPages

	Syntax: FilePrintPreviewPages [Pages]
	Without the argument, toggles display between one and two pages.
	Pages argument Description
	0 Toggles the display state (default)
	1 One page
	2 Two pages

	FileSave

	Syntax: FileSave
	Equivalent to the Save command on the File menu. Saves the current document.
	FileSaveAll

	Syntax: FileSaveAll [Save]
	Equivalent to the Save All command on the File menu. Prompts the user to save all changed files including NORMAL.DOT. If Save is 1, all edited documents are automatically saved. If Save is 2, the documents are not saved. If Save is 0 or omitted, Word prompts the user to save all changed files.
	FileSaveAs

	Syntax: FileSaveAs [Name$], [Format], [FastSave], [CreateBackup], [LockAnnot]
	Equivalent to the File Save As dialog box. Saves the current document with a new name and/or format. Name$ specifies the new name. Format specifies the new format.
	Format argument Document type
	0 Normal (Word format)
	1 Document Template
	2 Text Only (extended characters saved in ANSI character set)
	3 Text+Breaks (plain text with line breaks; extended characters saved in ANSI character set)
	4 Text Only (extended characters saved in IBM PC character set)
	5 Text+Breaks (text with line breaks; extended characters saved in IBM PC character set)
	6 Rich Text Format (RTF)

	Other file formats can be specified. They must be listed in your WIN.INI file under the Microsoft Word entry.
	Files$()

	Syntax: A$ = Files$(FileSpec$)
	Returns the first filename matching FileSpec$. If FileSpec$ is not supplied, the next file matching the last-used FileSpec$ is returned. This function can be used to get a list of files matching a FileSpec$ by specifying the FileSpec$ on the first iteration, and then omitting it thereafter. If no files match, a null string ("") is returned. Files$ (".") returns the current directory.
	Font

	Syntax: Font Name$, [Size]
	Applies the named font to the selection. You can include the Size argument instead of following this statement with the FontSize statement.
	Font$()

	Syntax: A$ = Font$()
	Syntax: A$ = Font$(Count)
	Returns the font name of the current selection. If the selection has more than one font, a null string is returned. If Count is supplied, Font$() returns the name of the font Count. Count must be in the range 1 to CountFonts().
	FontSize

	Syntax: FontSize Size
	Sets the size of the current selection in points.
	FontSize()

	Syntax: Num = FontSize()
	Returns the font size of the current selection. If the selection has more than one font size, 0 (zero) is returned.
	For...Next

	Syntax: For CounterVariable = Start To End [Step Increment]
	Statement(s)
	Next [CounterVariable]
	Executes the statements between For and Next as many times as it takes the CounterVariable to go from the Start value to the End value. The Increment is the value to increment the counter (usually 1). For more information on the For and Next statements, see Macros: Introduction.
	FormatCharacter

	Syntax: FormatCharacter [Font$], [Points[$]], [Color], [Bold], [Italic], [SmallCaps], [Hidden], [Underline], [WordUnderline], [DoubleUnderline], [Position[$]], [Spacing[$]]
	Equivalent to the Format Character dialog box. Applies character formatting to the selection. Some arguments take measurements in points. Other arguments correspond to a check box.
	FormatDefineStyles

	Syntax: FormatDefineStyles Name$, [BasedOn$], [NextStyle$], [AddToTemplate], [NewName$], [FileName$], [Source]
	Equivalent to the Format Define Styles dialog box. Defines a new style with the specified Name$. If a style with that name already exists, that style is made the current style. FormatDefineStyles sets up the style; to define the character, paragraph, and tab formats, use the FormatDefineStylesChar, FormatDefineStylesPara, and FormatDefineStylesTabs statements described later in this section. To redefine an existing style, include the specific arguments with the FormatDefineStyles statement.
	The BasedOn$ argument specifies a style on which to base the new style. The NextStyle$ argument specifies the style to be applied after the new style.
	AddToTemplate can be 0 for the document only, or 1 for the document and its template.
	The Delete, Rename, and Merge command button names can be appended.
	The NewName$ argument specifies a new name for the style; it is used only in conjunction with the Rename command button.
	The FileName$ argument is used only with the Merge command button. It specifies the template or document whose style sheet is to be merged with that of the current document or template.
	Source is used only in conjunction with the Merge command button name, and can be 0 (zero) (from the current document or template to a specified document or template) or 1 (from a specified document or template to the current document or template).
	FormatDefineStylesChar
	Dialog box equivalent; defines the current style with the specified character properties. This statement takes the same arguments as its corresponding format function. See "FormatCharacter," earlier in this section.
	FormatDefineStylesPara
	Dialog box equivalent; defines the current style with the specified paragraph properties. This statement takes the same arguments as its corresponding format function. See "FormatParagraph," later in this section.
	FormatDefineStylesPosition
	Dialog box equivalent; defines the current style with the specified position properties. This statement takes the same arguments as its corresponding format function. See "FormatPosition," later in this section.
	FormatDefineStylesTabs
	Dialog box equivalent; defines the current style with the specified tab properties. This statement takes the same arguments as its corresponding format function. See "FormatTabs," later in this section.
	FormatDocument

	Syntax: FormatDocument [PageWidth[$]], [PageHeight[$]], [DefTabs[$]], [TopMargin[$]], [BottomMargin[$]], [LeftMargin[$]], [RightMargin[$]], [Gutter[$]], [MirrorMargins], [FootnotesAt], [StartingNum[$]], [RestartNum], [Template$], [WidowControl]
	Equivalent to the Format Document dialog box. Applies document formatting properties.
	Some arguments take measurements in points. Other arguments correspond to a check box.
	To set the global or template default, append the SetDefault command button name to this statement. This is a powerful argument that changes the default document properties to those specified in the statement.
	FormatParagraph

	Syntax: FormatParagraph [Alignment], [LeftIndent[$]], [RightIndent[$]], [FirstIndent[$]], [Before[$]], [After[$]], [LineSpacing[$]], [Style$], [KeepTogether], [KeepWithNext], [Border], [Pattern], [PageBreak], [NoLineNum]
	Equivalent to the Format Paragraph dialog box. Applies paragraph formatting.
	The LeftIndent[$], RightIndent[$], and FirstIndent[$] arguments specify the amount of left, right, and first-line indents, respectively. The Before[$] and After[$] arguments specify the amount of spacing above and below a paragraph, respectively. The LineSpacing[$] argument specifies the amount of spacing for all lines in a paragraph. The Style$ argument specifies a style to be applied to a paragraph. The KeepTogether and KeepWithNext arguments prevent page breaks within a paragraph and between paragraphs, respectively.
	The PageBreak argument inserts a page break before printing the paragraph. The NoLineNum argument turns off line numbering for the paragraph.
	FormatPicture

	Syntax: FormatPicture [Border], [ScaleY], [ScaleX], [CropTop[$]], [CropLeft[$]], [CropBottom[$]], [CropRight[$]]
	Equivalent to the Format Picture dialog box. Applies picture formatting properties.
	Some arguments take measurements in points. Other arguments correspond to check boxes.
	FormatPosition

	Syntax: FormatPosition [Horizontal[$]], [HRelativeTo], [Vertical[$]], [VRelativeTo], [DistanceFromText], [ParagraphWidth[$]]
	Equivalent to the Format Position dialog box. Applies position formatting to the selected paragraphs.
	The Reset command button name can be appended to cancel the position formatting of the paragraphs.
	FormatSection

	Syntax: FormatSection [Columns], [ColumnSpacing[$]], [ColLine], [SectionStart], [Footnotes], [LineNum], [StartingNum[$]], [FromText[$]], [CountBy], [NumMode], [VertAlign]
	Equivalent to the Format Section dialog box. Applies section formatting properties to the selection. Some arguments take measurements in points or numbers. Other arguments correspond to check boxes.
	FormatStyles

	Syntax: FormatStyles Name$, [Create]
	Equivalent to the Format Styles dialog box. Applies the style in Name$ to the selected paragraphs. If the style does not exist and Create is not specified or is 0 (zero), an error is generated. If Create is specified as 1, the style is created with the properties of the selection, if it doesn't already exist.
	FormatTable

	Syntax: FormatTable [FromColumn], [Column], [ColumnWidth], [SpaceBetweenCols[$]], [IndentRows[$]], [MinimumRowHeight], [OutlineBorder], [TopBorder], [BottomBorder], [InsideBorder], [LeftBorder], [RightBorder], [AlignRows], [ApplyTo]
	Equivalent to the Format Table dialog box. When recording, pressing the Next or Prev Columns command button records a new FormatTable command.
	FormatTabs

	Syntax: FormatTabs [Position], [Align], [Leader]
	Equivalent to the Format Tabs dialog box. Position is a measurement in points.
	Align argument Alignment
	0 Left
	1 Centered
	2 Right
	3 Decimal

	Leader argument Leader character
	0 None
	1 Dot
	2 Dash
	3 Underline

	Set is the default action. You can also clear specified tabs or clear all tabs by appending the Clear or ClearAll command button name to the statement.
	Function...End Function

	Syntax: Function Name [ParameterList]
	Defines a function. The ParameterList is a list of variables, separated by commas, for receiving arguments to the function. For more information on user-defined functions, see Macros: Introduction.
	GetBookmark$()

	Syntax: A$ = GetBookmark$(BookmarkName$)
	Returns the text at the specified bookmark.
	GetCurValues

	Syntax: GetCurValues DialogRecord
	Stores in DialogRecord the current values for a previously dimensioned dialog box. For more information, see Macros: Introduction.
	GetGlossary$()

	Syntax: A$ = GetGlossary$(Name$, [Context])
	Returns the text of the glossary entry in Name$. The Context is 0 (zero) for global (default) or 1 for document template.
	GetProfileString$()

	Syntax: A$ = GetProfileString$([App$], Key$)
	Gets a value from the current WIN.INI file. App$ is the name of the Microsoft Windows application. If the application is not specified, the string [Microsoft Word] is used. If the Key$ is not found, the function returns a null string.
	GlossaryName$()

	Syntax: A$ = GlossaryName$(Count, [Context])
	Returns the name of the glossary defined in the given context (global or document template). Count must be in the range from 1 to CountGlossaries(Context). The name is taken from the list in the given context. Context is 0 (zero) for global, 1 for document template.
	GoBack

	Syntax: GoBack
	Toggles among the last three selections where text or formatting has changed.
	Goto

	Syntax: Goto Label/LineNumber
	Branches unconditionally to a label or line number.
	GrowFont

	Syntax: GrowFont
	Increases the size of the selected font. Can be used either on the selection, or at the insertion point.
	HangingIndent

	Syntax: HangingIndent
	Sets the indent of the selection to the next tab stop in the first paragraph. Sets the first line of the paragraph flush with the left margin.
	Help

	Syntax: Help
	Activates Help. Equivalent to pressing F1.
	HelpAbout

	Syntax: HelpAbout
	Displays a dialog box with the Word version number and copyright information.
	HelpActiveWindow

	Syntax: HelpActiveWindow
	Activates Help for the active window.
	HelpContext

	Syntax: HelpContext
	Activates context-sensitive Help. Equivalent to pressing Shift+F1.
	HelpIndex

	Syntax: HelpIndex
	Displays the list of Help topics.
	HelpKeyboard

	Syntax: HelpKeyboard
	Displays list of keyboard Help topics.
	HelpTutorial

	Syntax: HelpTutorial
	Starts the Tutorial.
	HelpUsingHelp

	Syntax: HelpUsingHelp
	Displays Help topics on how to use Help.
	Hidden

	Syntax: Hidden [On]
	Without an argument, toggles hidden text for the entire selection. If On is nonzero, makes the entire selection hidden text if the first character is hidden. If On is 0 (zero), removes hidden text from the entire selection.
	Hidden()

	Syntax: Num = Hidden()
	Returns 0 (zero) if none of the selection is hidden text, 1 if all of the selection is hidden text, or -1 if part of the selection is hidden text.
	HLine

	Syntax: HLine [Count]
	Scrolls horizontally to the right by Count lines. If Count is not specified, one line is the default. "Lines" mean the amount the screen is scrolled by clicking the mouse in a horizontal scroll bar arrow. A negative Count scrolls to the left.
	HPage

	Syntax: HPage [Count]
	Scrolls horizontally by Count screens. If Count is not specified, one screen is the default. A negative Count scrolls to the left.
	HScroll

	Syntax: HScroll Percentage
	Scrolls horizontally the specified percentage of the document width.
	HScroll()

	Syntax: Num = HScroll()
	Returns the current horizontal scroll position as a percentage of the document width.
	IconBarMode

	Syntax: IconBarMode
	Activates icon bar mode.
	If...ElseIf...Else...End If

	Syntax: If Condition Then Statement(s) [Else Statement(s)]
	Syntax: If Condition1 Then
	Performs conditional execution or branching, depending on the expressions. The conditions in an If...ElseIf...Else...End If block can be any numeric expressions in WordBASIC. For more information, see Macros: Introduction.
	Indent

	Syntax: Indent
	Indents the selection. The indent is aligned with the next tab stop. Indent does not change a first-line indent.
	Input

	Syntax: Input [#]StreamNumber, Variable, [Variable]
	Reads a line from the file specified by #StreamNumber into the variables listed. The line read from the file is separated into individual values by commas. If a StreamNumber is not specified, you are prompted in the status bar.
	Input$()

	Syntax: A$ = Input$(n, StreamNumber)
	Reads n characters from the file specified by StreamNumber.
	InputBox$()

	Syntax: A$ = InputBox$(Prompt$, [Title$], [Default$])
	Displays an editable dialog box. Returns the text that was in the box when OK was chosen. If you specified a default, it is loaded into the dialog box when it is displayed.
	Insert

	Syntax: Insert Text$
	Inserts the given text at the insertion point. Nonprinting characters are inserted as Chr$(n) statements.
	Value Character inserted
	Chr$(9) Tab
	Chr$(11) Linefeed
	Chr$(30) Nonbreaking hyphen
	Chr$(31) Optional hyphen
	Chr$(34) Quotation marks
	Chr$(160) Nonbreaking space

	InsertBookmark

	Syntax: InsertBookmark Name$
	Equivalent to the Insert Bookmark dialog box. Creates or deletes the named bookmark. If the Delete command button is appended, the bookmark is deleted. If Delete is not specified, the bookmark is created at the current selection.
	If you specify a nonexistent bookmark for deletion, an error is generated.
	InsertBreak

	Syntax: InsertBreak Type
	Equivalent to the Insert Break dialog box. Inserts a page, section, or column break at the current selection.
	Type argument Break type
	0 Page
	1 Column

	The following are section breaks:
	Type argument Break type
	2 Next
	3 Continuous
	4 Even
	5 Odd

	InsertColumnBreak

	Syntax: InsertColumnBreak
	Inserts a column break at the insertion point. If the insertion point is in a table, the break is inserted above the row in which the insertion point is located.
	InsertDateField

	Syntax: InsertDateField
	Inserts a DATE field at the selection.
	InsertField

	Syntax: InsertField Field$
	Equivalent to the Insert Field dialog box. Inserts the specified field at the selection. Do not include the field characters in Field$. For more information on inserting fields, see the full Technical Reference.
	InsertFieldChars

	Syntax: InsertFieldChars
	Inserts field characters ({ }) at the selection.
	InsertFile

	Syntax: InsertFile Name$, [Range$], [Link]
	Equivalent to the Insert File dialog box. Inserts the named file at the current selection.
	Range$ refers to a bookmark if Name$ refers to a Word document. If Name$ refers to another document type (for example, a Microsoft Excel worksheet), then Range$ refers to a named range. Only that part of the file is inserted. If Link is 1, a link to the file is inserted instead of the actual file.
	InsertFootnote

	Syntax: InsertFootnote [Reference$]
	Equivalent to the Insert Footnote dialog box. Inserts a footnote at the current selection.
	Reference$ is footnote reference text that you supply.
	To insert a footnote separator, continued footnote separator or notice for continued footnotes, append the Separator, ContSeparator, or ContNotice command button name.
	InsertIndex

	Syntax: InsertIndex [Type], [HeadingSeparator], [Replace]
	Equivalent to the Insert Index dialog box. Inserts an INDEX field at the current selection.
	Type is 0 (zero) for a normal index (default) or 1 for a run-in index. HeadingSeparator is 0 for none (default), 1 for a blank line, or 2 for a letter.
	If Replace is 1, the existing index is overwritten. If Replace is omitted or 0, the existing index is not overwritten.
	InsertIndexEntry

	Syntax: InsertIndexEntry [Entry$], [Range$], [Bold], [Italic]
	Equivalent to the Insert Index Entry dialog box. Inserts an XE field at the current selection. If Entry$ is omitted, the selection is the entry. The arguments correspond to check boxes.
	InsertPageBreak

	Syntax: InsertPageBreak
	Inserts a page break at the current selection.
	InsertPageField

	Syntax: InsertPageField
	Inserts a PAGE field at the current selection.
	InsertPageNumbers

	Syntax: InsertPageNumbers [Type], [Position]
	Dialog box equivalent; inserts a current PAGE field into the header or footer.
	Type is 0 (zero) for header, 1 for footer. Position is 0 (left aligned), 1 (centered), or 2 (right aligned).
	InsertPara

	Syntax: InsertPara
	Inserts a paragraph mark at the current selection.
	InsertPicture

	Syntax: InsertPicture [Name$]
	Equivalent to the Insert Picture dialog box. Inserts an IMPORT field at the current selection. If Name$ is not supplied, a 1-inch graphic frame with a single border is inserted.
	InsertTable

	Syntax: InsertTable [NumColumns], [NumRows], [InitialColWidth[$]], [ConvertFrom]
	Equivalent to the Insert Table dialog box. Choosing Format is recorded as an InsertTable statement followed by a FormatTable statement.
	InsertTableOfContents

	Syntax: InsertTableOfContents [Source], [From], [To], [Replace]
	Equivalent to the Insert Table Of Contents dialog box. Inserts a TOC field at the current selection.
	Source is 0 (zero) for outline headings, or 1 for table entry fields. From and To refer to the outline levels used.
	If Replace is 1, the existing table of contents is overwritten. If Replace is omitted or 0 (zero), the existing table of contents is not overwritten.
	InsertTableToText

	Syntax: InsertTableToText [ConvertTo]
	Dialog box equivalent; converts the selected cells to normal text.
	ConvertTo may be 0 (zero) for paragraphs, 1 for tab-delimited text, or 2 for comma-delimited text.
	InsertTimeField

	Syntax: InsertTimeField
	Inserts a TIME field at the current selection.
	Instr()

	Syntax: Num = Instr([Index], Source$, Search$)
	Searches for Search$ in Source$. Returns the number of the character where Search$ started, or 0 (zero) if Search$ is not found in Source$. If Index is supplied, the search starts at character Index.
	Int()

	Syntax: Num = Int(n)
	Returns the integer part of n.
	IsDirty()

	Syntax: Log = IsDirty()
	Returns -1 if the document has been changed (made dirty) since the last save, 0 (zero) if the document has not been changed.
	Italic

	Syntax: Italic [On]
	Without the argument, toggles italic for the entire selection. If On is nonzero, makes the entire selection italic. If On is 0 (zero), removes italic from the entire selection.
	Italic()

	Syntax: Num = Italic()
	Returns 0 (zero) if none of the selection is italic, 1 if all of the selection is italic, or -1 if part of the selection is italic.
	JustifyPara

	Syntax: JustifyPara
	Justifies the selected paragraphs.
	JustifyPara()
	Syntax: Num = JustifyPara()
	Returns 0 (zero) if none of the selected paragraphs are justified, 1 if all of the selected paragraphs are justified, or -1 if more than one kind of paragraph alignment is used.
	Kill

	Syntax: Kill Name$
	Deletes the file specified by Name$.
	LCase$()

	Syntax: A$ = LCase$(Source$)
	Returns Source$ converted to lowercase.
	Left$()

	Syntax: A$ = Left$(Source$, n)
	Returns the leftmost n characters of Source$.
	LeftPara

	Syntax: LeftPara
	Left aligns the selected paragraphs.
	LeftPara()

	Syntax: Num = LeftPara()
	Returns 0 (zero) if none of the selected paragraphs are left aligned, 1 if all of the selected paragraphs are left aligned, or -1 if more than one kind of paragraph alignment is used.
	Len()

	Syntax: Num = Len(Source$)
	Returns the number of characters in Source$.
	Let

	Syntax: [Let] Var = Expression
	Assigns the value of an expression to a variable. Let is optional.
	LineDown

	Syntax: LineDown [Repeat], [Select]
	Moves the selection down by Repeat lines. If the Repeat argument is omitted, 1 is assumed. If Select is nonzero, the selection is extended down by Repeat lines.
	LineDown()

	Syntax: Log = LineDown([Repeat], [Select])
	Moves the selection down by Repeat lines. Returns 0 (zero) if the action cannot be completed.
	Line Input
	Syntax: Line Input [#]StreamNumber, Variable$
	Reads an entire line from the file specified by StreamNumber and puts the result in the specified string variable. If a StreamNumber is not specified, you are prompted in the status bar. Similar to the Input statement but LineInput doesn't break the line into separate values at commas.
	LineUp

	Syntax: LineUp [Repeat], [Select]
	Moves the selection up by Repeat lines. If the Repeat argument is omitted, 1 is assumed. If Select is nonzero, the selection is extended up by Repeat lines. If Select is 0 (zero) or omitted, the selection is not extended.
	LineUp()

	Syntax: Log = LineUp([Repeat], [Select])
	Moves the selection up by Repeat lines. Returns 0 (zero) if the action cannot be completed. For example, the function would return 0 if the insertion point is at the beginning of the document.
	LockFields

	Syntax: LockFields
	Prevents the fields within the selection from being updated.
	Lof()

	Syntax: Num = Lof(StreamNumber)
	Returns the length of the file, in bytes.
	MacroAssignToKey

	Syntax: MacroAssignToKey [Name$], [KeyCode], [Context]
	Equivalent to the Macro Assign to Key dialog box. You can assign a macro to any key or key combination.
	Assigns the macro Name$ to the specified KeyCode. KeyCode is a number representing the exact key. The number is not equivalent to the SendKeys syntax.
	Context is 0 (zero) for global or 1 for document template.
	Assign is the default action. The ResetAll command button name can be appended to return the key assignments to the default state. The UnAssign command button name removes a macro connection to a specific key.
	Add this For this key
	1024 Alt +
	512 Shift +
	256 Ctrl +

	Key Code Produces
	8 Backspace
	9 Tab
	12 5 on numeric keypad when NumLock is off
	13 Enter
	27 Esc
	32 Space
	33 PgUp
	34 PgDn
	35 End
	36 Home
	45 Ins
	46 Del
	48 0
	49 1
	50 2
	51 3
	52 4
	53 5
	54 6
	55 7
	56 8
	57 9
	65 A
	66 B
	67 C
	68 D
	69 E
	70 F
	71 G
	72 H
	73 I
	74 J
	75 K
	76 L
	77 M
	78 N
	79 O
	80 P
	81 Q
	82 R
	83 S
	84 T
	85 U
	86 V
	87 W
	88 X
	89 Y
	90 Z
	96 0 on numeric keypad
	97 1 on numeric keypad
	98 2 on numeric keypad
	99 3 on numeric keypad
	100 4 on numeric keypad
	101 5 on numeric keypad
	102 6 on numeric keypad
	103 7 on numeric keypad
	104 8 on numeric keypad
	105 9 on numeric keypad
	106 * on numeric keypad
	107 + on numeric keypad
	108 ' on numeric keypad
	109 — on numeric keypad
	110 . on numeric keypad
	111 / on numeric keypad
	112 F1
	113 F2
	114 F3
	115 F4
	116 F5
	117 F6
	118 F7
	119 F8
	120 F9
	121 F10
	122 F11
	123 F12
	124 F13
	125 F14
	126 F15
	127 F16

	MacroAssignToMenu

	Syntax: MacroAssignToMenu [Name$], [Menu$], [MenuText$], [Context]
	Equivalent to the Macro Assign To Menu dialog box. Assigns the macro Name$ to the specified Menu$ with MenuText$. Menu$ can be File, Edit, View, Insert, Format, Utilities, Macro, or Window.
	Context is 0 (zero) for global or 1 for document template.
	Assign is the default action. You can append the ResetAll or UnAssign command button name to return the menu assignments to the default state or remove a macro from a menu.
	MacroEdit

	Syntax: MacroEdit Name$, [Context], [Description$], [ShowAll], [NewName$]
	Equivalent to the Macro Edit dialog box. Displays the Name$ macro for editing. Context is 0 (zero) for global (default) or 1 for document template. The Description$ refers to the text that appears in the status bar if the macro is assigned to a menu.
	The ShowAll argument lists all Word commands as well as the macros you have created.
	If one of the command button names Rename, Delete, or Set is used and followed by another action, multiple MacroEdit commands are recorded.
	The NewName$ agrument specifies a new name for the macro; this argument is used with the Rename command button.
	MacroName$()

	Syntax: A$ = MacroName$(Count, [Context], [All])
	Returns the name of the macro defined in the given context. Count may be in the range of 1 to CountMacros(Context). The name is taken from the list in the given context. MacroName$(0) gives the name of the current macro window, if any. Context is 0 (zero) for global or 1 for document template. If All is True, built-in commands are included.
	MacroRecord

	Syntax: MacroRecord [Name$], [Context], [Description$]
	Equivalent to the File Record Macro and the Macro Record dialog boxes. Starts the macro recorder. If Name$ is not given, the next default recording name (Macron) is used. Context is 0 (zero) for global (default) or 1 for document template. The Description$ refers to the text that appears in the status bar if the macro is assigned to a menu.
	MacroRun

	Syntax: MacroRun Name$, [ShowAll]
	Equivalent to the Macro Run dialog box. Runs the named macro or command. If ShowAll is 1, built-in commands are included.
	MenuMode

	Syntax: MenuMode
	Activates menu mode. Equivalent to pressing Alt or F10.
	Mid$()

	Syntax: Num = Mid$(Source$, Index, [Count])
	Returns Count characters from Source$, starting at character Index. If Count is not supplied, the rest of the string is returned.
	MkDir

	Syntax: MkDir Name$
	Creates the directory specified by DirName$.
	MoveText

	Syntax: MoveText
	Moves text. Equivalent to pressing F2.
	MsgBox

	Syntax: Message$, [Title$], [Type]
	Creates a message box displaying Message$.
	Title$ is the title of the message box. If it is not supplied, "Microsoft Word" is the title of the message box. Type determines the symbol and buttons displayed in the box. It is the sum of the values from the following groups:
	Type argument Displays
	Button:
	0 OK button (default)
	1 OK and Cancel buttons
	2 Abort, Retry, Ignore buttons
	3 Yes, No, Cancel buttons
	4 Yes and No buttons
	5 Retry and Cancel buttons

	Icons:
	0 No icon (default)
	16 Hand icon
	32 Question icon
	48 Exclamation icon
	64 Asterisk icon

	Button action:
	0 First button is the default (default)
	256 Second button is the default
	512 Third button is the default

	If Type is negative, then the message is displayed in the status bar and Type must be ‑1 (display the message permanently), ‑2 (display until a mouse or key event occurs), or ‑8 (use the entire status bar width).
	MsgBox()

	Syntax: Num = MsgBox(Message$, [Title$], [Type])
	Returns one of the following values:
	Return value Button pressed Button text
	—1 Leftmost button OK
	Yes
	Abort
	0 Next button Cancel No Retry
	1 Next button Cancel Ignore

	Name

	Syntax: Name OldName$ As NewName$
	Renames a file. If the new filename specified already exists, an error is generated.
	NextCell

	Syntax: NextCell
	Moves the selection to the beginning of the next cell in a table.
	NextCell()

	Syntax: Log = NextCell()
	Moves to the next cell. Returns 0 (zero) if there is no next cell.
	NextField

	Syntax: NextField
	Moves the selection to the next field result. Skips over marker fields, such as Index Entry fields.
	NextField()

	Syntax: Log = NextField()
	Moves to the next field. Returns 0 (zero) if there is no next field.
	NextObject

	Syntax: NextObject
	Selects the next object in page view.
	NextObject()

	Syntax: Log = NextObject()
	Moves to the next positioned object. Returns 0 (zero) if there is no next object.
	NextPage

	Syntax: NextPage
	Moves the insertion point to the beginning of the next page in page view.
	NextPage()

	Syntax: Log = NextPage()
	Moves the insertion point to the beginning of the next page. Returns 0 (zero) if there is no next page.
	NextTab()

	Syntax: Num = NextTab(Pos)
	Returns the position of the next tab stop to the right of Pos. Pos is a number given in points. If more than one paragraph is selected and the tabs do not all match, -1 is returned.
	NextWindow

	Syntax: NextWindow
	Moves the selection to the next document window.
	NormalStyle

	Syntax: NormalStyle
	Formats the selection in Normal paragraph format.
	NormalStyle()

	Syntax: Num = NormalStyle()
	Returns 1 if all of the selection has the Normal style, 0 (zero) if none of the selection has the Normal style, and -1 if part of the selection has the Normal style.
	OK

	Syntax: OK
	Terminates a copy or move operation and performs its action.
	On Error

	Syntax: On Error Goto Label
	Syntax: On Error Resume Next
	Syntax: On Error Goto 0
	The On Error control structure allows the programmer to "trap" an error so that the program can perform its own error handling. For more information on On Error, see Macros: Introduction.
	OnTime

	Syntax: OnTime When$, Name$, [Tolerance]
	Executes the macro specified by Name$ at the time specified by When$. When$ is a text representation of the time for execution in a 24-hour format. When$ can also include a date string that precedes the time string. If the date is not specified, the macro is run at the first occurence of the specified time. The macro is executed the next time Word is idle after the specified When$. Word does not run the macro if more than Tolerance seconds have elapsed since When$, and the macro has not yet run. If Tolerance is 0 (zero), or not supplied, Word will always run the macro, regardless of how long it is before Word is idle and can run the macro.
	Open

	Syntax: Open Name$ For Mode$ As [#]StreamNumber
	Opens the file or device specified by Name$. The Name$ can be a device such as Com1 or Lpt1, and must be enclosed in quotation marks. Do not include the colon following the device name.
	OpenUpPara

	Syntax: OpenUpPara
	Adds one line of space before the current paragraph.
	OtherPane

	Syntax: OtherPane
	Moves the selection to the other pane of the current window.
	OutlineCollapse

	Syntax: OutlineCollapse
	Collapses the lowest level of subtext levels under the selected heading.
	OutlineDemote

	Syntax: OutlineDemote
	Increases the heading level of the selection by one.
	OutlineExpand

	Syntax: OutlineExpand
	Expands the lowest level of subtext under the selected heading.
	OutlineLevel()

	Syntax: Num = OutlineLevel()
	Returns the heading level of the specified paragraph. Returns 0 (zero) if the specified paragraph doesn't have a defined level (body text, for example).
	OutlineMoveDown

	Syntax: OutlineMoveDown
	Moves the selection below the next visible heading.
	OutlineMoveUp

	Syntax: OutlineMoveUp
	Moves the selection above the next visible heading.
	OutlinePromote

	Syntax: OutlinePromote
	Decreases the heading level of the selection by one.
	OutlineShowFirstLine

	Syntax: OutlineShowFirstLine [On]
	If On is omitted, toggles the state. Changes the view of non-heading level text. If On is nonzero, only first line of text is shown, if On is 0 (zero), all text is shown.
	Overtype

	Syntax: Overtype [On]
	Without the argument, toggles overtyping mode. If On is nonzero, overtype mode is activated and OVR is displayed in the status bar. If On is 0 (zero), overtype mode is deactivated.
	Overtype()

	Syntax: Log = Overtype()
	Returns -1 if overtype mode is on, 0 (zero) if overtype mode is off.
	PageDown

	Syntax: PageDown [Repeat], [Select]
	Moves the selection down by Repeat screens. If the Repeat argument is omitted, 1 is assumed. If Select is nonzero, the selection is extended down by Repeat screens. Equivalent to the PgDn key. If Select is 0 (zero) or omitted, the selection is not extended.
	PageDown()

	Syntax: Log = PageDown([Repeat], [Select])
	Moves the selection down by Repeat pages. Returns -1 if operation was successful, returns 0 (zero) if not.
	PageUp

	Syntax: PageUp [Repeat], [Select]
	Moves the selection up by Repeat screens. If the Repeat argument is omitted, 1 is assumed. If Select is nonzero, the selection is extended up by Repeat screens. Equivalent to the PgUp key. If Select is 0 (zero) or omitted, the selection is not extended.
	PageUp()

	Syntax: Log = PageUp ([Repeat], [Select])
	Moves the selection up by Repeat pages. Returns -1 if operation was successful, returns 0 (zero) if not.
	ParaDown

	Syntax: ParaDown [Repeat], [Select]
	Moves the selection down by Repeat paragraphs. If Repeat is omitted, 1 is assumed. If Select is nonzero, the selection is extended down by Repeat paragraphs.
	ParaDown()

	Syntax: Log = ParaDown([Repeat], [Select])
	Moves the selection down by Repeat paragraphs. Returns 0 (zero) if the action cannot be performed. For example, the function returns 0 if the insertion point is at the end of the document.
	ParaUp

	Syntax: ParaUp [Repeat], [Select]
	Moves the selection up by Repeat paragraphs. If Repeat is omitted, 1 is assumed. If Select is nonzero, the selection is extended up by Repeat paragraphs.
	ParaUp()

	Syntax: Log = ParaUp([Repeat], [Select])
	Moves the selection up by Repeat paragraphs. Returns 0 (zero) if the action cannot be performed. For example, the function returns 0 if the insertion point is at the beginning of the document.
	PauseRecorder

	Syntax: PauseRecorder
	Stops macro recording until PauseRecorder is executed again.
	PrevCell

	Syntax: PrevCell
	Moves the selection to the previous cell.
	PrevCell()

	Syntax: Log = PrevCell()
	Moves selection to the previous cell. Returns 0 (zero) when the selection is in the first cell.
	PrevField

	Syntax: PrevField
	Moves the selection to the previous field.
	PrevField()

	Syntax: Log = PrevField()
	Moves selection to the previous field. Returns 0 (zero) when the selection is in the first field.
	PrevObject

	Syntax: PrevObject
	Selects the previous object in page view.
	PrevObject()

	Syntax: Log = PrevObject()
	Selects the previous object. Returns 0 (zero) when the selection is at the first object or text area.
	PrevPage

	Syntax: PrevPage
	In page view, moves the insertion point to the beginning of the previous actual page.
	PrevPage()

	Syntax: Log = PrevPage()
	Moves to the previous page. Returns 0 (zero) when the selection is at the first actual page.
	PrevTab()

	Syntax: Log = PrevTab(Pos)
	Returns the position of the next tab to the left of Pos. Pos is a number given in points. If more than one paragraph is selected and the tabs do not all match, -1 is returned.
	PrevWindow

	Syntax: PrevWindow
	Activates the previously active window.
	Print

	Syntax: Print [[#]StreamNumber], Expression
	Writes Expression to the file specified by StreamNumber. With no StreamNumber specified, output goes to the status bar.
	Read

	Syntax: Read [#]StreamNumber, Variable(s)
	Similar to the Input statement, but removes quotation marks for strings. This statement is used with the Write statement.
	RecordNextCommand

	Syntax: RecordNextCommand
	Records the next command at the insertion point in the current macro window.
	Rem

	Syntax: Rem Remarks
	Syntax: 'Remarks
	Inserts explanatory text into the macro. You can use an apostrophe (') instead of a Rem statement. If a Rem statement follows other statements on a line, it must be separated from those statements by a colon (:). A colon is not required before a remark introduced by an apostrophe.
	RenameMenu

	Syntax: RenameMenu MenuNumber, NewText$
	Renames the top level menu of Menu Number to New Text$. MenuNumber represents the name of a menu. NewText$ replaces the menu name. An ampersand (&) preceding a character makes it the keyboard equivalent to selecting from the menu. For example, "&Programs" becomes Programs when this statement is executed.
	The MenuNumber argument values are:
	MenuNumber Argument Menu
	0 File
	1 Edit
	2 View
	3 Insert
	4 Format
	5 Utilities
	6 Macro
	7 Window

	Repeat

	Syntax: Repeat
	Repeats the last command.
	RepeatSearch

	Syntax: RepeatSearch
	Repeats the most recent search.
	ResetChar

	Syntax: ResetChar
	Removes manual character formatting from the selected text. Manual character formatting is formatting that is not applied as a style. For example, you manually format a word or phrase in a paragraph as bold text if the paragraph style is normal text. The text is left with the character formatting of the current style.
	ResetChar()

	Syntax: Num = ResetChar()
	Returns 1 if the selected text contains no manual character formatting. Returns 0 (zero) if any manual character formatting is present.
	ResetFootnoteContNotice

	Syntax: ResetFootnoteContNotice
	Resets the footnote continuation notice to the default value.
	ResetFootnoteContSep

	Syntax: ResetFootnoteContSep
	Resets the footnote continuation separator to the default value.
	ResetFootnoteSep

	Syntax: ResetFootnoteSep
	Resets the footnote separator to the default value.
	ResetPara

	Syntax: ResetPara
	Removes manual paragraph formatting from the selected text. The text is left with the paragraph formatting of the current style.
	ResetPara()

	Syntax: Num = ResetPara()
	Returns 1 if the selected text contains no manual paragraph formatting. Returns 0 (zero) if any manual paragraph formatting is present.
	Right$()

	Syntax: A$ = Right$(Source$, Count)
	Returns the rightmost Count characters of Source$.
	RightPara

	Syntax: RightPara
	Right aligns the selected paragraphs.
	RightPara()

	Syntax: Num = RightPara()
	Returns 0 (zero) if none of the selected paragraphs are right aligned, 1 if all of the selected paragraphs are right aligned, or -1 if more than one kind of paragraph alignment is used.
	RmDir

	Syntax: RmDir Name$
	Removes the specified directory or subdirectory. Files must first be removed from the subdirectory for this statement to work.
	Rnd()

	Syntax: Num = Rnd([Expression])
	Returns a random fractional value between 0 (zero) and 1. The Expression is not used by WordBASIC, but is provided for compatibility with other forms of BASIC.
	RulerMode

	Syntax: RulerMode
	Switches to ruler mode.
	SaveTemplate

	Syntax: SaveTemplate
	Saves the document template.
	Seek

	Syntax: Seek [#]StreamNumber, Count
	Positions file pointer at character Count in the file attached to stream StreamNumber.
	Seek()

	Syntax: Num = Seek([#]StreamNumber)
	Returns the current file pointer for the specified StreamNumber.
	Select Case
	The expression is compared with all the values given in each CaseExpression until a match is found. If a match is found, the statement(s) following the CaseExpression are executed. If there is no match and there is a Case Else, those statement(s) are executed.
	For more information on Select Case, see Macros: Introduction.
	Selection$()

	Syntax: A$ = Selection$()
	Returns the plain, unformatted text of the selection. The maximum limit on the selection is 32,000 characters or until memory runs out. If the selection is too large, Selection$() is filled with as much of the selection as will fit, and an error is generated. If the selection is an insertion point, the character following the insertion point is returned.
	SelectTable

	Syntax: SelectTable
	Selects the table containing the insertion point.
	SelType

	Syntax: SelType Type
	Changes the selection highlighting to Type. Type refers to one of the following:
	Type argument Type
	0 Hidden
	1 Insertion point
	2 Selection
	4 Dotted selection or insertion point (whatever is current)
	5 Dotted insertion point
	6 Dotted selection

	SelType()

	Syntax: Num = SelType()
	Returns the type of the selection highlighting.
	SendKeys

	Syntax: SendKeys Keys$, [Wait]
	Sends the keys specified to the active application, just as if they were typed at the keyboard. If Word is not the active application and Wait is -1, Word waits for all keys to be processed before proceeding.
	Keys$ is represented by one or more characters, such as a for the character a, {Enter} for the Enter key, and {33} for PgUp.
	To specify characters that aren't displayed when you press the key, use the codes shown in the following table.
	Key Code
	Backspace {backspace} or {bs} or {bksp}
	Break {break}
	CapsLock {capslock}
	Clear {clear}
	Del {delete} or {del}
	Down {down}
	End {end}
	Enter {enter}
	Esc {escape} or {esc}
	Help {help}
	Home {home}
	Ins {insert}
	Left {left}
	NumLock {numlock}
	PgDn {pgdn}
	PgUp {pgup}
	PrtSc {prtsc}
	Right {right}
	Tab {tab}
	Up {up}
	F1 {F1}
	F2 {F2}
	F3 {F3}
	F4 {F4}
	F5 {F5}
	F6 {F6}
	F7 {F7}
	F8 {F8}
	F9 {F9}
	F10 {F10}
	F11 {F11}
	F12 {F12}
	F13 {F13}
	F14 {F14}
	F15 {F15}
	F16 {F16}

	The plus sign (+), the percent sign (%), and the caret (^) have special meanings, described below.
	For example, %{enter} sends the code for Alt+Enter. The code +(eb) specifies EB.
	To repeat a key sequence, use the syntax {key number}. For example, {pgdn 20} means press the PgDn key 20 times. Remember to put a space between the key and the number.
	SetDirty

	Syntax: SetDirty [Dirty]
	Makes Word recognize the current document as "dirty," or a changed document. If Dirty is omitted or 1, the document is made dirty. If 0 (zero), it makes the document not dirty.
	SetEndOfBookmark

	Syntax: SetEndOfBookmark Bookmark1$, [Bookmark2$]
	Sets Bookmark2$ to the end point of Bookmark1$. If Bookmark2$ is not supplied, Bookmark1$ is set to its own end.
	SetGlossary

	Syntax: SetGlossary Name$, Text$, [Context]
	Defines a glossary entry called Name$ containing the text Text$. Context is 0 (zero) for global, 1 for document template.
	SetProfileString

	Syntax: SetProfileString [App$], Key$, Value$
	Sets a value in the current WIN.INI.
	App$ is the name of the Microsoft Windows application. If the application is not specified, the string Microsoft Word is used.
	SetStartOfBookmark

	Syntax: SetStartOfBookmark Bookmark1$, [Bookmark2$]
	Sets Bookmark2$ to the starting point of Bookmark1$. If Bookmark2$ is not given, Bookmark1$ is set to its own start.
	Sgn()

	Syntax: Num = Sgn(n)
	Returns the sign of n. Returns 1 for a positive number, -1 for a negative number, or 0 for zero.
	Shell

	Syntax: Shell App$, [WindowStyle]
	Starts another program under Microsoft Windows. App$ uses the same format as the File Run command in the Windows MS-DOS Executive, including any switches or arguments that the program accepts. If App$ is the name of a file with an extension specific to an installed application (.DOC for a Word document, for example), the statement starts the application and loads that file.
	WindowStyle Window type
	0 Minimized window
	1 Normal window
	2 Minimized window (for Microsoft Excel compatibility)
	3 Maximized window
	4 Deactivated window

	ShowAll

	Syntax: ShowAll [On]
	Without the argument, toggles ShowAll option of the View Preference command. If On is nonzero, shows all invisible objects such as hidden text, tabs, spaces, paragraph marks, and so on. If On is 0 (zero), turns off ShowAll option.
	ShowAllHeadings

	Syntax: ShowAllHeadings
	Shows all text in outline view.
	ShowHeading1

	Syntax: ShowHeading1
	Shows up to Level 1 headings and hides subordinate headings.
	ShowHeading2

	Syntax: ShowHeading2
	Shows up to Level 2 headings and hides subordinate headings.
	ShowHeading3

	Syntax: ShowHeading3
	Shows up to Level 3 headings and hides subordinate headings.
	ShowHeading4

	Syntax: ShowHeading4
	Shows up to Level 4 headings and hides subordinate headings.
	ShowHeading5

	Syntax: ShowHeading5
	Shows up to Level 5 headings and hides subordinate headings.
	ShowHeading6

	Syntax: ShowHeading6
	Shows up to Level 6 headings and hides subordinate headings.
	ShowHeading7

	Syntax: ShowHeading7
	Shows up to Level 7 headings and hides subordinate headings.
	ShowHeading8

	Syntax: ShowHeading8
	Shows up to Level 8 headings and hides subordinate headings.
	ShowHeading9

	Syntax: ShowHeading9
	Shows up to Level 9 headings and hides subordinate headings.
	ShowVars

	Syntax: ShowVars
	Displays the list of variables (and their values) currently in use. This statement is useful for debugging macros.
	ShrinkFont

	Syntax: ShrinkFont
	Decreases the size of the selected font. Can be used either on the selection or at the insertion point.
	ShrinkSelection

	Syntax: ShrinkSelection
	Shrinks the selection to the next smallest unit (word, sentence, paragraph, etc.).
	SmallCaps

	Syntax: SmallCaps [On]
	Without the argument, toggles small caps for the entire selection. If On is nonzero, makes the entire selection small caps. If On is 0 (zero), removes small caps from the entire selection.
	SmallCaps()

	Syntax: Num = SmallCaps()
	Returns 0 (zero) if none of the selection is small caps, 1 if all of the selection is small caps, or -1 if part of the selection is small caps.
	SpacePara1

	Syntax: SpacePara1
	Formats the selected paragraphs with single spacing.
	SpacePara1()

	Syntax: Num = SpacePara1()
	Returns 0 (zero) if none of the selected paragraphs are single-spaced, 1 if all of the selected paragraphs are single-spaced, or -1 if more than one kind of paragraph spacing is used.
	SpacePara2

	Syntax: SpacePara2
	Formats the selected paragraphs with double spacing.
	SpacePara2()

	Syntax: Num = SpacePara2()
	Returns 0 (zero) if none of the selected paragraphs are double-spaced, 1 if all of the selected paragraphs are double-spaced, or -1 if more than one kind of paragraph spacing is used.
	SpacePara15

	Syntax: SpacePara15
	Formats the selected paragraphs with one-and-one-half line spacing.
	SpacePara15()

	Syntax: Num = SpacePara15()
	Returns 0 (zero) if none of the selected paragraphs are one-and-one-half spaced, 1 if all of the selected paragraphs are one-and-one-half spaced, or -1 if more than one kind of paragraph spacing is used.
	Spike

	Syntax: Spike
	Deletes the selection after copying it to the special glossary called the Spike.
	StartOfColumn

	Syntax: StartOfColumn [Select]
	Moves insertion point to topmost position in the currently selected table column. If Select is nonzero, extends the selection.
	StartOfDocument

	Syntax: StartOfDocument [Select]
	Moves the selection to the beginning of the document. If Select is nonzero, extends the selection.
	StartOfLine

	Syntax: StartOfLine [Select]
	Moves the selection to the beginning of the line. If Select is nonzero, extends the selection.
	StartOfRow

	Syntax: StartOfRow [Select]
	Moves insertion point to the leftmost position in the currently selected table row. If Select is nonzero, extends the selection.
	StartOfWindow

	Syntax: StartOfWindow [Select]
	Moves the insertion point to the top left corner of the window. If Select is nonzero, extends the selection.
	Stop

	Syntax: Stop
	Stops a running macro and displays a message that the macro was interrupted.
	Str$()

	Syntax: A$ = Str$(n)
	Returns the string representation of value n. Positive numbers have a leading space character.
	String$()

	Syntax: A$ = String$(Count, Source$)
	Returns the first character in Source$ repeated Count times. Replacing Source$ with the number m representing the ASCII value of Source$ returns the character with ANSI code m repeated Count times.
	StyleName$()

	Syntax: A$ = StyleName$([Count], [Context], [All])
	Returns the name of the style defined in the given context (global or document template). Count may be in the range from 1 to CountStyles(Context). If Count is 0 (zero), the name of the current style is returned; otherwise, the name is taken from the list in the given context. Context is 0 for global, 1 for document template.
	Sub...End Sub
	Defines a subroutine. For more information on subroutines, see Macros: Introduction.
	SubScript

	Syntax: SubScript [On]
	Without the argument, toggles subscript for the entire selection. If On is nonzero, makes the entire selection subscript. If On is 0 (zero), removes subscript from the entire selection.
	SubScript()

	Syntax: Num = SubScript()
	Returns 0 (zero) if none of the selection is subscript, 1 if all of the selection is subscript, or -1 if part of the selection is subscript or superscript.
	SuperScript

	Syntax: SuperScript [On]
	Without the argument, toggles superscript for the entire selection. If On is nonzero, makes the entire selection superscript. If On is 0 (zero), removes superscript from the entire selection.
	SuperScript()

	Syntax: Num = SuperScript()
	Returns 0 (zero) if none of the selection is superscript, 1 if all of the selection is superscript, or -1 if part of the selection is superscript or subscript.
	TabLeader$()

	Syntax: A$ = TabLeader$(Pos)
	Returns the leader character of the tab at Pos points. If more than one paragraph is selected and all the tabs don't match, an empty string is returned.
	The leader characters returned are blank space, period, hyphen, and underscore.
	TabType()

	Syntax: Num = TabType(Pos)
	Returns the type of tab at the given position Pos. If more than one paragraph is selected and all the tabs don't match, -1 is returned. If the tabs match, the type is returned as follows:
	If function returns Tab type is
	0 Left-aligned
	1 Centered
	2 Right-aligned
	3 Decimal

	Time$()

	Syntax: A$ = Time$()
	Returns the current time in the default format.
	ToggleFieldDisplay

	Syntax: ToggleFieldDisplay
	Toggles the display between field codes and field results.
	UCase$()

	Syntax: A$ = UCase$(A$)
	Returns A$ converted to uppercase.
	Underline

	Syntax: Underline [On]
	Without the argument, toggles underlining for the entire selection. If On is nonzero, makes the entire selection underlined. If On is 0 (zero), removes underlining from the entire selection.
	Underline()

	Syntax: Num = Underline()
	Returns 0 (zero) if none of the selection is underlined, 1 if all of the selection is underlined, or -1 if part of the selection is underlined or more than one kind of underlining is used.
	UnHang

	Syntax: UnHang
	Reduces the amount of indent in a hanging indent.
	UnIndent

	Syntax: UnIndent
	Removes the indent from the selected paragraphs. The first paragraph is aligned with the previous tab stop.
	UnLinkFields

	Syntax: UnLinkFields
	Converts the selected fields to plain text and uses the last result.
	UnLockFields

	Syntax: UnLockFields
	Unlocks fields in the current selection for updating.
	UnSpike

	Syntax: UnSpike
	Empties the Spike glossary and inserts all contents into the document at the selection.
	UpdateFields

	Syntax: UpdateFields
	Updates the fields in the selection.
	UpdateSource

	Syntax: UpdateSource
	Sends changes in linked Word documents back to their source.
	UtilCalculate

	Syntax: UtilCalculate
	Equivalent to the Calculate command on the Utilities menu. The selection is evaluated as a mathematical expression. The result of the evaluation is placed on the Clipboard.
	UtilCalculate()

	Syntax: Num = UtilCalculate([Expression$])
	Evaluates Expression. With the argument, this function is equivalent to the = field. Values in Expression can be table cell references. For more information on the = field, see the full Technical Reference. Without an expression, performs the same operation as the UtilCalculate statement, but returns the result rather than placing it on the Clipboard.
	UtilCompareVersions

	Syntax: UtilCompareVersions Name$
	Equivalent to the Utilities Compare Versions dialog box. Compares the current document with the document specified by Name$.
	UtilCustomize

	Syntax: UtilCustomize [AutoSave], [Units], [Pagination], [SummaryPrompt], [ReplaceSelection], [Name$], [Initials$], [ButtonFieldClicks]
	Equivalent to the Utilities Customize dialog box. Some arguments take measurements in points or numbers. Other arguments correspond to check boxes.
	UtilGetSpelling

	Syntax: UtilGetSpelling FillArray$(), [Word$], [MainDic$], [SuppDic$]
	Fills the string array FillArray$ with all available spellings for a word. If Word$ is supplied, that word is used. If it is not supplied, Word uses the word closest to the insertion point. The spellings for each definition are appended in the order they appear in the spelling checker.
	UtilGetSpelling()

	Syntax: Log = UtilGetSpelling(FillArray$(), [Word$], [MainDic$], [SuppDic$])
	Fills the string array FillArray$ with all available spellings of a word. If Word$ is supplied, that word is used. If it is not supplied, Word uses the word closest to the insertion point. The spellings for each definition are appended in the order they appear in the spelling checker. Returns 0 (zero) if the word is spelled correctly.
	UtilGetSynonyms

	Syntax: UtilGetSynonyms FillArray$(), [Word$]
	Fills the string array FillArray$ with all available synonyms for Word$. If Word$ is not supplied, the word nearest the selection is used.
	UtilGetSynonyms()

	Syntax: Log = UtilGetSynonyms(FillArray$(), [Word$])
	Fills the string array FillArray$ with all available synonyms for Word$. If Word$ is not supplied, the word nearest the selection is used. Returns 0 (zero) if there are no synonyms available and returns -1 if one or more synonyms are available.
	UtilHyphenate

	Syntax: UtilHyphenate [HyphenateCaps], [Confirm], [HotZone[$]]
	Equivalent to the Utilities Hyphenate dialog box. The arguments correspond to check boxes.
	UtilRenumber

	Syntax: UtilRenumber [NumParas], [Type], [StartAt], [ShowAllLevels], [Format$]
	Equivalent to the Utilities Renumber dialog box. The arguments correspond to check boxes.
	UtilRepaginateNow

	Syntax: UtilRepaginateNow
	Equivalent to the Repaginate Now command on the Utilities menu. Forces repagination of the entire document.
	UtilRevisionMarks

	Syntax: UtilRevisionMarks [MarkRevisions], [RevisionBars], [NewText]
	Equivalent to the Utilities Revision Marks dialog box. The arguments correspond to check boxes.
	The Search (for next text with revision marking) Accept Revisions or Undo Revisions command button name can be appended.
	UtilSort

	Syntax: UtilSort [Order], [Type], [Separator], [FieldNum[$]], [SortColumn], [CaseSensitive]
	Equivalent to the Utilities Sort dialog box.
	UtilSpelling

	Syntax: UtilSpelling [Word$], [MainDic$], [SuppDic$], [IgnoreCaps], [AlwaysSuggest]
	Equivalent to the Utilities Spelling dialog box. The arguments correspond to check boxes.
	The Delete command button name can be appended to remove the word from the current supplemental dictionary.
	UtilSpellSelection

	Syntax: UtilSpellSelection
	Checks the selection. If the selection is only part of a word, the selection is expanded to include the whole word. The default supplemental dictionary is used.
	UtilThesaurus

	Syntax: UtilThesaurus
	Lists alternative words for the selection. Equivalent to the Thesaurus command on the Utilities menu.
	Val()

	Syntax: Num = Val(A$)
	Returns the numeric value of A$.
	ViewAnnotations

	Syntax: ViewAnnotations [On]
	Turns on the annotations pane if On is nonzero, turns off the annotations pane is On is 0 (zero). Without the argument, toggles the annotations pane on and off.
	ViewAnnotations()

	Syntax: Log = ViewAnnotations()
	Returns -1 if annotations view mode is on, 0 (zero) if annotations view mode is off.
	ViewDraft

	Syntax: ViewDraft [On]
	Turns on draft view mode if On is nonzero, turns off draft view mode if On is 0 (zero). Without the argument, toggles draft view mode. If no window is open, the first window opened is opened in draft view.
	ViewDraft()

	Syntax: Log = ViewDraft()
	Returns -1 if draft view mode is on, 0 (zero) if draft view mode is off.
	ViewFieldCodes

	Syntax: ViewFieldCodes [On]
	Turns on field codes view mode if On is nonzero, turns off field codes view mode if On is 0 (zero). Without the argument, toggles field codes view mode. If no window is open, the first window opened shows field codes.
	ViewFieldCodes()

	Syntax: Log = ViewFieldCodes()
	Returns -1 if field codes view mode is on, 0 (zero) if field codes view mode is off.
	ViewFootnotes

	Syntax: ViewFootnotes [On]
	Turns on footnotes view mode if On is nonzero, turns off footnotes view mode if On is 0 (zero). Without the argument, toggles footnotes view mode. If no window is open, the first window opened is opened in footnotes view.
	ViewFootnotes()

	Syntax: Log = ViewFootnotes()
	Returns -1 if footnotes view mode is on, 0 (zero) if footnotes view mode is off.
	ViewFullMenus

	Syntax: ViewFullMenus
	Turns on full menus.
	ViewMenus()

	Syntax: Num = ViewMenus()
	Returns the menu state as follows:
	Return value Menu state
	0 Normal short menus
	1 Normal full menus
	2 No document short menus
	3 No document full menus

	ViewOutline

	Syntax: ViewOutline [On]
	Turns on outline view mode if On is nonzero, turns off outline view mode if On is 0 (zero). Without the argument, toggles outline view mode. If no window is open, the first window opened is opened in outline view.
	ViewOutline()

	Syntax: Log = ViewOutline()
	Returns -1 if outline view mode is on, 0 (zero) if outline view mode is off.
	ViewPage

	Syntax: ViewPage [On]
	Turns on page view mode if On is nonzero, turns off page view mode if On is 0 (zero). Without the argument, toggles page view mode. If no window is open, the first window opened is opened in page view.
	ViewPage()

	Syntax: Log = ViewPage()
	Returns -1 if page view mode is on, 0 (zero) if page view mode is off.
	ViewPreferences

	Syntax: ViewPreferences [Tabs], [Spaces], [Paras], [Hyphens], [Hidden], [ShowAll], [DisplayAsPrinted], [Pictures], [TextBoundaries], [HScroll], [VScroll], [TableGridlines], [StyleAreaWidth[$]]
	Equivalent to the View Preferences dialog box.
	ViewRibbon

	Syntax: ViewRibbon [On]
	Turns on the ribbon if On is nonzero, turns off the ribbon if On is 0 (zero). Without the argument, toggles the ribbon. If no window is open, the first window opened is opened with the ribbon.
	ViewRibbon()

	Syntax: Log = ViewRibbon()
	Returns -1 if the ribbon is on, 0 (zero) if the ribbon is off.
	ViewRuler

	Syntax: ViewRuler [On]
	Turns on the ruler if On is nonzero, turns off the ruler if On is 0 (zero). Without the argument, toggles the ruler. If no window is open, the first window opened is opened with the ruler.
	ViewRuler()

	Syntax: Log = ViewRuler()
	Returns -1 if the ruler is on, 0 (zero) if the ruler is off.
	ViewShortMenus

	Syntax: ViewShortMenus [On]
	Turns on short menus if On is nonzero, turns off short menus if On is 0 (zero). Without the argument, toggles short menus. If no window is open, the first window opened is opened in short menus.
	ViewStatusBar

	Syntax: ViewStatusBar [On]
	Turns on the status bar if On is nonzero, turns off the status bar if On is 0 (zero). Without the argument, toggles the status bar.
	ViewStatusBar()

	Syntax: Log = ViewStatusBar()
	Returns -1 if the status bar is on, 0 (zero) if the status bar is off.
	VLine

	Syntax: VLine [Count]
	Scrolls down vertically by Count lines. If Count is not specified, one line is the default. A negative Count scrolls up.
	VPage

	Syntax: VPage [Count]
	Scrolls down vertically by Count screens. If Count is not specified, one screen is the default. A negative Count scrolls up.
	VScroll

	Syntax: VScroll Percentage
	Scrolls vertically the specified percentage of the document length.
	VScroll()

	Syntax: Num = VScroll()
	Returns the current vertical scroll position as a percentage of the document's size.
	While...Wend

	Syntax: While Condition
	Repeats the statements in the block while the Condition is True. If the Condition is initially False, the loop is never executed.
	Window()

	Syntax: Num = Window()
	Returns the number of the currently selected window. The number ranges from 1 to the number of open windows. The number corresponds to the number on the Window menu.
	Window1

	Syntax: Window1
	Selects Window 1. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window2

	Syntax: Window2
	Selects Window 2. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window3

	Syntax: Window3
	Selects Window 3. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window4

	Syntax: Window4
	Selects Window 4. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window5

	Syntax: Window5
	Selects Window 5. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window6

	Syntax: Window6
	Selects Window 6. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window7

	Syntax: Window7
	Selects Window 7. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window8

	Syntax: Window8
	Selects Window 8. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	Window9

	Syntax: Window9
	Selects Window 9. This number corresponds to the number on the Window menu. If you select a nonexistent window, an error is generated.
	WindowArrangeAll

	Syntax: WindowArrangeAll
	Arranges all open windows so that windows do not overlap.
	WindowName$()

	Syntax: A$ = WindowName$(n)
	Returns the title of the nth open window. The n corresponds to the number on the Window menu. If n is 0 (zero) or not supplied, the name of the current window is returned.
	WindowNewWindow

	Syntax: WindowNewWindow
	Equivalent to the New Window command on the Window menu. Creates a copy of the current window.
	WindowPane()

	Syntax: Num = WindowPane()
	If the window isn't split or if the top pane of the current window is selected, returns 1. If the bottom pane is selected, returns 3.
	WordLeft

	Syntax: WordLeft [Repeat], [Select]
	Moves the insertion point left by Repeat words, extending the selection if Select is nonzero.
	WordLeft()

	Syntax: Log = WordLeft([Repeat], [Select])
	Moves the selection left by Repeat words. Returns 0 (zero) if the action cannot be performed. For example, the function returns 0 if the insertion point is at the beginning of the document.
	WordRight

	Syntax: WordRight [Repeat], [Select]
	Moves the insertion point right by Repeat words, selecting if Select is nonzero.
	WordRight()

	Syntax: Log = WordRight([Repeat], [Select])
	Moves the selection right by Repeat words. Returns 0 (zero) if the action cannot be performed.
	WordUnderline

	Syntax: WordUnderline [On]
	Without the argument, toggles word-only underlining for the entire selection. If On is nonzero, makes the entire selection word-only underlining. If On is 0 (zero), removes word-only underlining from the entire selection.
	WordUnderline()

	Syntax: Log = WordUnderline()
	Returns 0 (zero) if none of the selection is word underlined; 1 if all of the selection is word underlined; or -1 if part of the selection is word underlined or more than one kind of underlining is used.
	Write

	Syntax: Write [#]StreamNumber, Expressions
	Writes the arguments to StreamNumber including delimiters so they can be read by the Read statement.

	Dialog Control Definition Statements
	You can create your own dialog boxes and customized menus with Word macros. The control statements used in dialog box construction are described in this section. For more information on dialog box construction, see the full Technical Reference.
	In the syntax lines, the following arguments are used:
	Argument Meaning
	x Horizontal position of the item in 1/8 system font character width units
	y Vertical position of the item in 1/12 system font character width units
	dx Width of the item in 1/4 system font character width units
	dy Height of the item in 1/8 system font character width units

	Begin Dialog

	Syntax: Begin Dialog UserDialog [x, y,] dx, dy
	Starts the dialog box declaration. The dx and dy arguments are the width and height of the dialog box (relative to the given x and y coordinates). If x and y are not supplied, then the dialog box is positioned automatically by Word at the point where dialog boxes usually appear on the screen.
	CheckBox

	Syntax: CheckBox x, y, dx, dy, Text$, .Field
	Creates a check box. When the dialog box is used .Field contains the current setting: if the value is 0, the box is not checked; any other value means the box is checked. The result is a numeric field with the value 0 (zero) (not checked) or 1 (checked) or -1 (grayed) in the dialog record returned from Dialog.
	ComboBox

	Syntax: ComboBox x, y, dx, dy, Array_Variable$, .Field
	Creates an expanded combo box with the list box filled from the Array_Variable$. When the dialog box is used, .field contains the current setting, your selected string, returned from Dialog.
	Dialog

	Syntax: Dialog DialogRecord
	Displays the dialog box specified by DialogRecord, for editing. After editing, you can store edits in DialogRecord by choosing OK or lose edits by choosing Cancel. Choosing Cancel produces a run-time error that you can trap with On Error.
	End Dialog

	Syntax: End Dialog
	Ends the definition of the dialog box.
	GroupBox

	Syntax: GroupBox x, y, dx, dy, Text$
	Creates a box with a title. A GroupBox does not have a result.
	ListBox

	Syntax: ListBox x, y, dx, dy, Array_Variable$, .Field
	Creates a list box control filled with the strings in Array_Variable$. When the dialog box is used, .Field contains the current setting, the index of your selected choice, returned from Dialog.
	OKButton and CancelButton

	Syntax: OKButton x, y, dx, dy
	Syntax: CancelButton x, y, dx, dy
	If you choose the OK button, the macro continues. If you choose the Cancel button, an error is generated. This error can be trapped with On Error. For more information on On Error, see Macros: Introduction.
	OptionGroup and OptionButton

	Syntax: OptionGroup .Field
	Syntax: OptionButton x, y, dx, dy, Text$
	OptionGroup begins the definition of a series of related option buttons. Within the group only one button may be active (on) at a time. The .Field argument is set to a value between 0 (zero) and n, which represents the value of the currently active button.
	Text

	Syntax: Text x, y, dx, dy, Text$
	Creates a box of static text. Text does not have a result. Text statement must precede the dialog box control it is associated with.
	TextBox

	Syntax: TextBox x, y, dx, dy, .Field

